DRC & Research News

This page shares the latest news in T1D research and DRC’s community.

Get the most recent diabetes research news, delivered straight to your inbox

Clock

Is it Possible to Delay the Onset of Type 1 Diabetes?

Living with type 1 diabetes (T1D) is challenging. It requires constant monitoring and adjustment of one’s blood sugar. Since T1D is commonly diagnosed in childhood, it can put additional strain on parents who must carefully manage their child’s condition. However, a recent study reveals that scientists may have found a way to delay the onset of type 1 diabetes by two years or more.

An antibody drug developed by Jeffrey Bluestone, an immunologist at the University of California, San Francisco, helps to shut down activated T cells thereby reducing the body’s immune system attacks on insulin-producing beta cells. It is the destruction of these cells that triggers T1D. Bluestone partnered with Kevan Herold, an endocrinologist at Yale University, to begin researching the potential of this drug in delaying the development of diabetes.

They first experimented with the drug on mouse models who were at high risk of developing type 1 diabetes, and it was effective in staving off the disease in many of the mice. In 2000, they shifted their work to human trials. The key was figuring out exactly when to administer the drug. If they gave it too early, there was not enough T cell activation so there was not much to protect against. Too late and there was too much T cell activity to manage. They had to find the precise time when diabetes was on the verge of developing or had been newly diagnosed.

In a trial involving 12 patients, after one year, nine of the participants had maintained or increased their body’s natural insulin production. This meant that their body was better able to manage glucose levels on its own and required less insulin to be injected.

After some setbacks and skepticism, Bluestone, Herold, and their team arranged for another trial. This time, they included participants who were at a high risk of developing type 1 diabetes within five years. They recruited 76 participants, 44 of whom received the drug (now known as teplizumab), and 32 of whom received a placebo. The drug was administered via IV infusion over 14 consecutive days. The results showed that while individuals who received the placebo were diagnosed with diabetes after an average of two years, those who received teplizumab were diagnosed after an average of four years. In addition, 72% of placebo recipients developed diabetes after five years compared to only 43% who received the experimental drug.

There is still a great deal of research and clinical testing that must be done, but this is a step forward in delaying onset of type 1 diabetes and eventually perhaps preventing development of the disease all together in high-risk individuals. Even delaying the disease by two years as the current study showed is monumental in improving quality of life. It is two fewer years of daily disease management and potential complications.

This discovery could lead to a greater understanding of diabetes prevention or delaying disease progression. It could stimulate new research and studies from scientists as they seek to advance results. The Diabetes Research Connection, though not involved with this study, provides critical funding that allows early career scientists to move forward with novel research projects. There’s no telling exactly what impact their findings could have on the future of type 1 diabetes or when the next major breakthrough will occur.

Learn More +
Immune Diabetes

Scientists Uncover New Insight into Autoimmune Response

Autoimmune diseases are challenging to treat because the immune system plays a critical role in keeping the body healthy. However, when this system is destroying its own cells even without the presence of an infection, it can be problematic and potentially life-threatening. Millions of people suffer from autoimmune diseases such as type 1 diabetes (T1D), lupus, and scleroderma, and treatment options—as well as their effectiveness—are limited.

However, researchers at the University of Leeds and the University of Pennsylvania have made a new discovery that could change treatment in the future. They found two proteins—BRISC and SHMT2—that together are responsible for controlling the body’s response to infection or what it deems foreign invaders.

The team is aiming to figure out a way to target these proteins and keep the immune system from attacking and destroying the body’s own cells. This could eventually generate a new class of drugs for treating autoimmune disorders, though this type of treatment is still a long way off as a wealth of research and testing still needs to be conducted regarding this process.

It is encouraging to see new developments occurring and progress being made toward better understanding autoimmune diseases such as type 1 diabetes. With advanced research, scientists can formulate improved treatment options and perhaps one day a cure.

The Diabetes Research Connection, though not involved with this study, is part of the effort toward improving prevention, treatment, and quality of life for individuals living with T1D. Through donations from individuals, corporations, and foundations, early career scientists are able to receive critical funding to support novel, peer-reviewed research projects.

Learn More +
Diabetes X-Ray

Exploring Protective Factors Against Diabetic Kidney Disease

One of the complications that can stem from living with diabetes is the risk of developing diabetic kidney disease. The kidneys play a critical role in filtering waste and excess water out of the blood and sending it out of the body. Prolonged high blood sugar and/or blood pressure can damage the kidneys and prevent them from functioning effectively. Eventually, individuals may require dialysis or a kidney transplant if damage is too extensive.

However, a recent study from the Joslin Diabetes Center found that some people have biological protective factors that may be effective in reducing risk of diabetic kidney disease. Their bodies have certain enzymes that affect glucose metabolism and protect the kidneys. Researchers studied cohorts of individuals who have been living with type 1 or type 2 diabetes for more than 50 years with minimal or no complications. They are referred to as Joslin Medalists.

One key finding was that the Medalists had increased PKM2, an enzyme in the blood that protects against diabetic kidney disease. There were also other metabolites and proteins that appeared at higher levels as well in their plasma. An interesting discovery was that the presence of an amyloid precursor protein (APP)—which is known to signal increased risk of Alzheimer’s disease—may actually work as a protective factor against diabetic kidney disease.

Scientists need to conduct additional research to further understand these potential protective factors and how they can be used to improve diagnosis and treatment of diabetic kidney disease or diabetes in general. Diabetic kidney disease can be a potentially fatal complication, so the more researchers understand about how it develops and the biological protective factors that can decrease risk, the better they can support individuals living with diabetes and their health.

Though not involved with this study, the Diabetes Research Connection (DRC) stays abreast of the latest research regarding type 1 diabetes and ways to improve diagnosis, treatment, and quality of life for individuals with the disease. Through donations from individuals, corporations, and foundations, the DRC provides critical funding for early career scientists to pursue novel research studies and further understanding of type 1 diabetes.

 

Learn More +
Diabetes Cheque

Connect For A Cure: May 2019 Newsletter

Welcome to the May edition of the Diabetes Research Connection newsletter! We aim to keep you updated with our latest achievements, upcoming events, and how you can get involved in supporting our noble cause.

The Purpose Behind Connect For A Cure

Have you ever wondered why we’re so passionate about Diabetes Research? It’s because we believe in the power of unity to make a difference in the world of medical research. Every bit of support, every shared success story, brings us one step closer to finding a cure for diseases that affect millions worldwide.

May Highlights

Success Stories

This month, we are proud to share inspiring stories of people who’ve shown extraordinary resilience in the face of life-altering diseases. Their journeys motivate us to continue our mission to connect and find a cure.

Medical Advances

In medical news, there have been promising breakthroughs this month. Our dedicated researchers have made considerable strides in therapeutic development, bringing us closer than ever to finding cures for several illnesses.

Events

Fundraising Events

This May, we hosted several successful fundraising events. Through charity runs, auctions, and bake sales, our community rallied together to raise crucial funds for ongoing research.

Community Outreach

Our community outreach programs this month focused on educating the public about early disease detection and prevention. Together, we’re building a healthier future.

Get Involved

Volunteer Opportunities

Looking for ways to contribute? Our organization thrives on the support of volunteers like you. From organizing events to administrative tasks, there’s a place for everyone at Diabetes Research Connection.

Donations and Support

Every donation, big or small, makes a huge difference in our journey towards finding cures. By making a contribution, you’re directly supporting research and patient care initiatives.

Looking Forward

Upcoming Events

Stay tuned for our upcoming events next month! We’ve got several engaging community activities, awareness campaigns, and fundraising events in store for you.

Future Goals

We’re more committed than ever to our goal of connecting communities to find cures. With your continued support, we aim to expand our research capabilities and broaden our outreach programs.

Conclusion

May has been an incredible month for Diabetes Research Connection, filled with inspiring stories, research breakthroughs, and overwhelming community support. It is this spirit of unity and resilience that drives us forward in our mission. As we look towards the future, we’re excited about the possibilities that lie ahead. Together, we can make a difference.

FAQs

1. How can I volunteer for DRC?

You can join us as a volunteer by visiting our website and signing up for the volunteer program that best suits your skills and interests.

2. Where do my donations go?

Your donations directly support medical research and patient care initiatives. We ensure transparency in the allocation of funds, with detailed reports available on our website.

3. Are there any upcoming events I can participate in?

Yes, we have several community events, awareness campaigns, and fundraising activities planned for the coming months. Details are regularly updated on our events page.

4. How are success stories collected?

Success stories are shared by patients, caregivers, and medical practitioners involved in the treatment journey. They serve as powerful reminders of the impact of our work.

5. How can I stay updated with the latest news from DRC?

You can subscribe to our monthly newsletter, follow us on social media, or visit our website for regular updates.

 

We’re committed to keeping our community updated. Click on the link below to read more about what we’ve been up to and the impact we are making together. It takes a community to connect for a cure!

May 2019 Newsletter

Learn More +
Histology of human pancreatic tissue

Beta Cell Proliferation May Help Protect Against Type 1 Diabetes

In individuals with type 1 diabetes (T1D), the body’s immune system mistakenly attacks and destroys insulin-producing beta cells. For years, researchers have been looking at options for suppressing this immune system attack, as well as processes to replace beta cells or stimulate the body to produce more. A recent study by researchers at the Joslin Diabetes Center may have found a way to do both and increase protection against T1D.

Scientists found that by speeding up cell proliferation and flooding mouse models with beta cells, it stopped the immune system from destroying these cells. According to Dr. Rohit Kulkarni, HMS Professor of Medicine and Co-Section Head of Islet and Regenerative Biology at the Center, “We believe there are some alterations in the new beta cells where a number of cells being presented as autoantigens are reduced or diluted, and therefore, because of the slow presentation of the antigens, the number of autoreactive T cells are less pathogenic.” In addition, when these cells were transplanted into other mice, they appeared to have a greater resistance to stress, which could also help them to survive longer in adverse conditions.

Gaining a greater understanding of the role cell proliferation can play and determining when the ideal time to activate this process is could have a positive impact on improving protective factors against T1D. This process has not yet been tested in humans, and there would likely still be a need for some level of immune system suppression to manage lingering autoimmunity.

The Diabetes Research Connection (DRC) stays abreast of the latest developments regarding T1D and is interested to see how these findings impact future studies and treatment options for the disease. It is these types of projects that stimulate innovative studies from other researchers. The DRC provides critical funding to support early career scientists in pursuing novel, peer-reviewed research.

 

Learn More +

OUR PROJECTS

See our approved research projects and campaigns.

Role of the integrated stress response in type 1 diabetes pathogenesis
In individuals with type 1 diabetes (T1D), the insulin-producing beta cells are spontaneously destroyed by their own immune system. The trigger that provokes the immune system to destroy the beta cells is unknown. However, accumulating evidence suggest that signals are perhaps first sent out by the stressed beta cells that eventually attracts the immune cells. Stressed cells adapt different stress mitigation systems as an adaptive response. However, when these adaptive responses go awry, it results in cell death. One of the stress response mechanisms, namely the integrated stress response (ISR) is activated under a variety of stressful stimuli to promote cell survival. However, when ISR is chronically activated, it can be damaging to the cells and can lead to cell death. The role of the ISR in the context of T1D is unknown. Therefore, in this DRC funded study, we propose to study the ISR in the beta cells to determine its role in propagating T1D.
Wearable Skin Fluorescence Imaging Patch for the Detection of Blood Glucose Level on an Engineered Skin Platform
zhang
A Potential Second Cure for T1D by Re-Educating the Patient’s Immune System
L Ferreira
Validating the Hypothesis to Cure T1D by Eliminating the Rejection of Cells From Another Person by Farming Beta Cells From a Patient’s Own Stem Cells
Han Zhu
Taming a Particularly Lethal Category of Cells May Reduce/Eliminate the Onset of T1D
JRDwyer 2022 Lab 1
Can the Inhibition of One Specific Body Gene Prevent Type 1 Diabetes?
Melanie
Is Cholesterol Exacerbating T1D by Reducing the Functionality and Regeneration Ability of Residual Beta Cells?
Regeneration Ability of Residual Beta Cells
A Call to Question… Is T1D Caused by Dysfunctionality of Two Pancreatic Cells (β and α)?
Xin Tong
Novel therapy initiative with potential path to preventing T1D by targeting TWO components of T1D development (autoimmune response and beta-cell survival)
flavia pecanha