DRC & Research News

This page shares the latest news in T1D research and DRC’s community.

Get the most recent diabetes research news, delivered straight to your inbox

t1d or t2d

More Adults May have Type 1 Diabetes Than Previously Thought

Type 1 diabetes (T1D) used to be known as juvenile diabetes because it is often first diagnosed during childhood. Since the pancreas produces little to no insulin, difficulty regulating blood sugar is typically noticed early on. However, that is not always the case. There are also many individuals who are not diagnosed with T1D until after age 30. In addition, they may be mistakenly identified as having type 2 diabetes rather than type 1.

A recent study compared data from the UK Biobank and also conducted clinical trials to determine how adults are diagnosed and treated when diabetes is suspected. Many people were initially diagnosed with type 2 diabetes and did not receive insulin treatment. They used an oral glucose-lowering medication in order to manage their blood sugar. But even when using rapid acting insulin, some still had difficulty with blood sugar control.

Approximately 5 percent of adults diagnosed with T2D actually have T1D. While this may not seem significant, proper diagnosis is critical to providing accurate treatment and education for patients. In addition, insurance may not cover the cost of supplies for those with T2D, but insulin pumps and continuous glucose monitors may be covered for those with T1D. This can make a major difference in care for many people.

The study involved nearly 600 adults from South West England who were diagnosed with diabetes after age 30 between 2007 and 2017. Results showed that 123 participants (21 percent) had type 1 diabetes with severe insulin deficiency requiring continuous insulin treatment within three years of diagnosis. There were 306 participants diagnosed with type 2 diabetes based on a peptide level of 600 pmol/L or greater for at least three years after initial diagnosis. Another 115 participants were not included in the analysis due to indeterminate results. The study also included 220 participants who had been diagnosed with T1D at age 30 or younger for comparison purposes.

While symptoms are often similar, the study found that “rapid insulin requirement was highly predictive of late-onset type 1 diabetes, with 84 percent requiring insulin within 1 year. And of all the patients treated with insulin within 3 years, 57 percent developed sever endogenous insulin deficiency consistent with type 1 diabetes.” Compared to participants with T2D, those with T1D typically had a lower BMI, were more likely to have a positive islet autoantibody test, and had higher genetic risk scores for T1D.

It can be difficult to differentiate between the two types of diabetes, but medical providers should carefully monitor those they believe may have T1D and conduct related tests to determine whether they should be treated initially using insulin as opposed to an oral medication.

The study was presented at the European Association for the Study of Diabetes (EASD) 2018 Annual Meeting by Nicholas J. Thomas, MD, from the University of Exeter, United Kingdom. Dr. Thomas’ team is working on developing algorithms to improve the accuracy of diabetes diagnoses in order to provide the best care for patients.

Accurate diagnosis of type 1 or type 2 diabetes is essential for effective care and patient education. The Diabetes Research Connection supports research related to T1D and advancing understanding related to the diagnosis, treatment, and prevention of this disease. Early career scientists are provided with up to $70,000 in funding to conduct peer-reviewed, novel research studies. Learn more and find a project to support by visiting http://diabetesresearchconnection.org.

Learn More +
Building a pipeline of researchers

Building a Pipeline of Young Researchers

New and innovative research is essential to continuing to expand scientific knowledge and improve the future of healthcare. Yet over the years, the biomedical community has seen a troubling downward trend in funding, support, and opportunities for young researchers. A study published in the Proceedings of the National Academy of Sciences of the United States of America investigated some potential factors for why investigators are struggling early on in their careers and not receiving as much funding to stimulate independent research.

For years, attaining an R01 from the National Institutes of Health (NIH) has been a prerequisite for young biomedical researchers to become independent investigators and start their own laboratories. Yet the average age that they receive their first R01 has steadily increased from less than 38 years old in 1980 to more than 45 years old in 2013. In 1980, 5.6% of grant funding went to investigators who were younger than 36, but by 2012, this had dropped to just 1.3%. Principal investigators over age 65 are awarded more than twice as many R01s as those under age 36.

It has become increasingly challenging for young scientists to secure necessary funds to advance their careers in research. In turn, this puts future generations of biomedical researchers in jeopardy because more scientists are becoming disheartened and exploring other career paths. It also disrupts the emergence of scientific breakthroughs from bright young minds with untapped potential.

There are many reasons why young investigators may be losing out on the fight for NIH funding. For one, some are spending more time in post-doctoral programs training and it is taking longer for them to secure faculty positions. There may also be unintentional bias from review committees to select more established investigators who have a proven track record of success rather than taking a risk on unknown scientists. Funding has been reduced over the years making the competition fiercer and the awarding of grants increasingly selective. This also means that universities must shoulder a larger portion of the costs associated with supporting research endeavors.

The Diabetes Research Connection (DRC) is reversing this trend by funding early-career scientists who then leverage funding from DRC to seek additional funding from larger foundations and NIH.

 

DRC is supporting the next generation by directing its fundraising toward early-career scientists. It recognizes that mainstream funding is highly competitive, and, as the above research has shown, is less frequently awarded to young researchers. Through DRC, scientists receive up to $70,000 from donors for their research projects, which can be enough to give them a strong foundation to conduct novel research related to type 1 diabetes. To learn more about current projects and support these efforts, visit http://diabetesresearchconnection.org.

Learn More +
Rising Cost of Insulin

The Growing Cost of Type 1 Diabetes Management

For individuals with type 1 diabetes (T1D), insulin is a life-saver. Literally. Without it, their body can go into a state of diabetic ketoacidosis where blood sugar becomes so high that the body shuts down. It can be fatal if not treated immediately. Since the pancreas does not produce enough (or in some cases any) insulin on its own, people with T1D rely on insulin daily to keep their blood sugar in check. However, the cost of this life-saving hormone has continued to increase over years, and for some, it has become unaffordable, even with insurance.
A vial of insulin can cost around $250 without insurance or other financial assistance. It is not unusual for someone with T1D to use between two and four vials every month. That means they could be paying $500 to $1,000 for a medication that is critical to their survival. Even with insurance, deductibles can be thousands of dollars. This means they must pay this money up front – in addition to monthly premiums – before insurance kicks in to help offset costs. For some, this is simply not feasible. Despite having a solid job, the cost can be too much on top of other living expenses such as rent, utilities, and food.
Unfortunately, this means that some people with type 1 diabetes have resorted to rationing their insulin supply in an effort to make it last longer. They administer less insulin than their body actually needs to keep their blood sugar within a desirable range. This can quickly spiral out of control and lead to complications such as diabetic ketoacidosis. It is a dangerous decision, but if they cannot afford more insulin, they may feel it is better than going without.
Many people are fighting for improved regulations regarding pricing for insulin as well as insurance so that people do not have to choose between paying for insulin versus other bills, or deciding how to make the insulin they do have last until they can afford more. There are organizations that can help individuals with diabetes to find financial assistance to help with the cost of insulin and other diabetes supplies, and sometimes they may be able to get insulin for free depending on the situation. Not everyone is aware of these options and resources, however, so advocacy is so important.
Type 1 diabetes is a manageable condition, but people must have access to the necessary resources in order to survive. While treatment options have improved over the years, the cost is still an issue.
The Diabetes Research Connection (DRC) strives to support peer-reviewed, novel research studies regarding type 1 diabetes treatment and management. As scientists gain a greater understanding of this disease, it may help to make future care more affordable and eventually lead to a cure. To learn more about the Diabetes Research Connection and support current projects, visit http://diabetesresearchconnection.org.

Learn More +
Plasma cell B lymphocyte producing antibodies isolated on black

Increasing Polyclonal IgMs May Help Prevent or Reverse T1D

A common strategy used by researchers in treating type 1 diabetes (T1D) is to destroy or deactivate immune cells that mistakenly attack insulin-producing beta cells. There have been many variations on this approach over the years, but effectiveness has been limited. Typically, these autoreactive cells reemerge. However, tackled this issue from a different angle instead of looking at how to increase certain protective cells.

Researchers, including Daniel Moore who works with the Diabetes Research Connection, found that IgMs have immunoregulatory properties that help to limit inflammatory responses and decrease autoreactive B lymphocytes. Islet-reactive B lymphocytes have been found to produce anti-islet antibodies linked to the development of stage 1 T1D. IgM may also help to stimulate the production of regulatory T cells.

When administered in non-obese diabetic (NOD) mice, purified IgM was able to prevent the development of diabetes and increase regulatory T cells. However, IgM that was taken from pre-diabetic mice was not as effective. IgM obtained from Swiss Webster donor mice (recognized as healthy, not pre-diabetic, mice) was highly effective in reversing hyperglycemia and preventing the onset of diabetes. The researchers also used human IgM from healthy donors and found similar results.

The study shows the potential effectiveness of healthy donor IgMs in promoting normal immune homeostasis, preventing diabetes occurrence, and reversing new-onset diabetes. While immunoglobulin therapy is not a new concept, it usually contains low levels of IgM, whereas this study focused on higher levels of purified IgM. More research is necessary to further explore the potential of donor polyclonal IgM for the prevention and treatment of type 1 diabetes.

Daniel Moore, a senior author on the study, is a scientist associated with the Diabetes Research Connection (DRC). The DRC is committed to funding novel, peer-reviewed research focused on preventing and curing T1D as well as improving quality of life for those with the disease. It has played a role in supporting dozens of projects. To learn more about current studies, visit http://diabetesresearchconnection.org.

Learn More +

OUR PROJECTS

See our approved research projects and campaigns.

Role of the integrated stress response in type 1 diabetes pathogenesis
In individuals with type 1 diabetes (T1D), the insulin-producing beta cells are spontaneously destroyed by their own immune system. The trigger that provokes the immune system to destroy the beta cells is unknown. However, accumulating evidence suggest that signals are perhaps first sent out by the stressed beta cells that eventually attracts the immune cells. Stressed cells adapt different stress mitigation systems as an adaptive response. However, when these adaptive responses go awry, it results in cell death. One of the stress response mechanisms, namely the integrated stress response (ISR) is activated under a variety of stressful stimuli to promote cell survival. However, when ISR is chronically activated, it can be damaging to the cells and can lead to cell death. The role of the ISR in the context of T1D is unknown. Therefore, in this DRC funded study, we propose to study the ISR in the beta cells to determine its role in propagating T1D.
Wearable Skin Fluorescence Imaging Patch for the Detection of Blood Glucose Level on an Engineered Skin Platform
zhang
A Potential Second Cure for T1D by Re-Educating the Patient’s Immune System
L Ferreira
Validating the Hypothesis to Cure T1D by Eliminating the Rejection of Cells From Another Person by Farming Beta Cells From a Patient’s Own Stem Cells
Han Zhu
Taming a Particularly Lethal Category of Cells May Reduce/Eliminate the Onset of T1D
JRDwyer 2022 Lab 1
Can the Inhibition of One Specific Body Gene Prevent Type 1 Diabetes?
Melanie
Is Cholesterol Exacerbating T1D by Reducing the Functionality and Regeneration Ability of Residual Beta Cells?
Regeneration Ability of Residual Beta Cells
A Call to Question… Is T1D Caused by Dysfunctionality of Two Pancreatic Cells (β and α)?
Xin Tong
Novel therapy initiative with potential path to preventing T1D by targeting TWO components of T1D development (autoimmune response and beta-cell survival)
flavia pecanha