Using Gene Editing as a Potential Type 1 Diabetes Treatment

DNA Strand

It has been more than a decade since scientists began experimenting with CRISPR gene-editing technology to alter DNA sequences and gene function. This tool allows scientists to correct mutations or defects in genes and manipulate them to treat or prevent certain diseases. This technology has also been used with crops. Researchers are still exploring this tool’s potential and ethical use, but many studies have been conducted thus far using it in different ways.

A recent study examines the use of CRISPR-Cas9 in the treatment of diabetes. Scientists at Washington University in St. Louis corrected a mutation in the WFS1 gene which causes Wolfram syndrome, of which diabetes is one symptom. Then, they used CRISPR-Cas9 to edit human-induced pluripotent stem cells and target their differentiation into pancreatic beta cells. This creates an abundance of fully functional beta cells to be used in conjunction with gene therapy.

When the altered beta cells were transplanted into diabetic mice, blood glucose levels dropped and glycemic control was maintained for at least six months. Scientists are exploring whether this process can be used to effectively reverse or stop type 1 diabetes by editing a patient’s own beta cells. In addition, the abundance of cells created means that more testing can occur to develop specific medications or therapies to treat the disease.

More research is needed before gene editing can potentially be used as an approved treatment for type 1 diabetes, but researchers continue to learn more. Diabetes Research Connection (DRC) is interested to see what this technology may mean for the future of diabetes treatment and management and how it could evolve. Though not involved with this study, the DRC is committed to supporting research around type 1 diabetes and provides early-career scientists with critical funding for novel, peer-reviewed studies. To learn more about current projects and how to help, visit http://localhost/drc.

Skip to content