DRC & Research News

This page shares the latest news in T1D research and DRC’s community.

Get the most recent diabetes research news, delivered straight to your inbox

Diabetes Audit

Factors Identified for More Effective Type 1 Diabetes Care

Managing type 1 diabetes is a complex process. Every person is different and must figure out what strategies and devices work best for their care, and that involves working together with their healthcare provider. Results of a recent audit have identified some key factors that contribute to better diabetes management from a provider perspective.

Participants in the study included top clinics that care for more than 500 individuals with type 1 diabetes. Results found that at up to 40 percent of patients achieved HbA1c levels of 58mmol/mol or lower at some centers, while in other centers only 20 percent of patients hit this target. The data was analyzed in an effort to identify factors that may have contributed to these differences.

Some of the strategies that have been found effective include providing structured education and dedicated pump clinics for patients to support them in diabetes care. More than half of the centers that participated in the audit reported having nurses and staff that were specially trained in type 1 diabetes care. Several of the centers also offered support services via phone and online to patients and focused on improving access to continuous glucose monitors (CGMs).

It may also be beneficial for treatment centers to partner with other services including psychological care and community organizations to improve outcomes for patients. Taking a collaborative approach could support patients in managing health across multiple areas thereby enhancing overall type 1 diabetes care.

The Diabetes Research Connection (DRC), though not involved in this study, is committed to advancing knowledge and treatment when it comes to type 1 diabetes. The DRC provides critical funding to support early-career scientists in conducting peer-reviewed, novel research studies. To learn more and contribute to these efforts, visit http://diabetesresearchconnection.org.

Learn More +

OUR PROJECTS

See our approved research projects and campaigns.

Role of the integrated stress response in type 1 diabetes pathogenesis
In individuals with type 1 diabetes (T1D), the insulin-producing beta cells are spontaneously destroyed by their own immune system. The trigger that provokes the immune system to destroy the beta cells is unknown. However, accumulating evidence suggest that signals are perhaps first sent out by the stressed beta cells that eventually attracts the immune cells. Stressed cells adapt different stress mitigation systems as an adaptive response. However, when these adaptive responses go awry, it results in cell death. One of the stress response mechanisms, namely the integrated stress response (ISR) is activated under a variety of stressful stimuli to promote cell survival. However, when ISR is chronically activated, it can be damaging to the cells and can lead to cell death. The role of the ISR in the context of T1D is unknown. Therefore, in this DRC funded study, we propose to study the ISR in the beta cells to determine its role in propagating T1D.
Wearable Skin Fluorescence Imaging Patch for the Detection of Blood Glucose Level on an Engineered Skin Platform
zhang
A Potential Second Cure for T1D by Re-Educating the Patient’s Immune System
L Ferreira
Validating the Hypothesis to Cure T1D by Eliminating the Rejection of Cells From Another Person by Farming Beta Cells From a Patient’s Own Stem Cells
Han Zhu
Taming a Particularly Lethal Category of Cells May Reduce/Eliminate the Onset of T1D
JRDwyer 2022 Lab 1
Can the Inhibition of One Specific Body Gene Prevent Type 1 Diabetes?
Melanie
Is Cholesterol Exacerbating T1D by Reducing the Functionality and Regeneration Ability of Residual Beta Cells?
Regeneration Ability of Residual Beta Cells
A Call to Question… Is T1D Caused by Dysfunctionality of Two Pancreatic Cells (β and α)?
Xin Tong
Novel therapy initiative with potential path to preventing T1D by targeting TWO components of T1D development (autoimmune response and beta-cell survival)
flavia pecanha