DRC & Research News

This page shares the latest news in T1D research and DRC’s community.

Get the most recent diabetes research news, delivered straight to your inbox

Examining the Co-Occurrence of Asthma and Type 1 Diabetes

It is not uncommon for individuals to have more than one disease or condition at a time. Oftentimes, there is an underlying link between their development, even if it is not entirely understood. In addition, many conditions run in families, which can be due to genetics or even possibly environmental factors.

A recent study looked at data from more than 1.2 million children in Sweden to see if there was a potential association between asthma and type 1 diabetes. They examined risk both within individuals and within families, comparing information from full siblings, half-siblings (both maternal and paternal), full cousins, and half cousins as well.

According to their results, individuals with asthma were at increased risk of developing type 1 diabetes (T1D), but the presence of T1D did not increase their risk of later developing asthma. In addition, if an individual had either T1D or asthma, their full siblings were at increased risk of developing either disease. Full cousins were also at a greater risk.

Data was obtained from several Swedish registers held by the National Board of Health & Welfare and Statistics Sweden and encompassed 1,284,748 singleton children born in Sweden between January 1, 2001, and December 31, 2013. Of these children, 121,809 had asthma, 3,812 had T1D, and 494 had both diseases. Their findings suggest that there may be shared familiar factors that affect associations ranging from genetics to environment.

Understanding these potential associations may help healthcare providers with recognizing symptoms of either disease earlier on if one has already been diagnosed. It may also influence management or treatment of these diseases. More research is necessary to further explore possible connections between asthma and T1D and what that might mean for future care.

Though not involved in this study, the Diabetes Research Connection (DRC) is continually striving to advance research related to T1D by providing critical funding to early-career scientists for their studies. This can lead to improved diagnosis, treatment, and prevention methods, as well as one day finding a cure. To learn more about current research projects and how to help, visit https://diabetesresearchconnection.org.

Learn More +

Using Saliva to Monitor Blood Glucose Levels

Traditional blood glucose monitoring for type 1 diabetes has involved using finger sticks to draw and test a small droplet of blood. This can leave fingers sore and calloused as testing occurs multiple times throughout the day to keep blood sugar in check. In addition, it requires a variety of supplies, and lancets used to draw blood must be disposed of safely and properly.

A recent study found that there may be a non-invasive method of monitoring blood sugar that is easier to collect and test: saliva. Researchers found that saliva contains numerous biomarkers that could make it a feasible alternative to blood. In addition, testing is conducted using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy rather than the reagents that are necessary when blood is used. That makes saliva a more sustainable and eco-friendly option as well. In early testing, using saliva was 95.2% accurate in monitoring blood sugar.

Regular testing and monitoring of blood sugar is essential for individuals with type 1 diabetes to reduce risk of hypo- or hyperglycemia as well as diabetic ketoacidosis and other complications. However, many people do not enjoy constant finger sticks. Using saliva and ATR-FTIR spectroscopy or other technology could become a non-invasive, less painful option. This process is still in early stages of testing, and more research is needed to determine its efficacy and how exactly it could be used by patients.

Diabetes Research Connection (DRC) is excited to see how this form of blood glucose monitoring evolves moving forward and what it could mean for individuals living with type 1 diabetes. It is another step toward providing more management options and better meeting the needs of individuals with diabetes.

Though not involved with this study, the DRC is committed to providing critical funding for early-career scientists pursuing research related to type 1 diabetes. This could include topics focused on improved diagnosis, treatment, prevention, and management of the disease, as well as minimizing complications, enhancing quality of life, and finding a cure. To learn more and support these efforts, visit https://diabetesresearchconnection.org.

Learn More +

Using Gene Editing as a Potential Type 1 Diabetes Treatment

It has been more than a decade since scientists began experimenting with CRISPR gene-editing technology to alter DNA sequences and gene function. This tool allows scientists to correct mutations or defects in genes and manipulate them to treat or prevent certain diseases. This technology has also been used with crops. Researchers are still exploring this tool’s potential and ethical use, but many studies have been conducted thus far using it in different ways.

A recent study examines the use of CRISPR-Cas9 in the treatment of diabetes. Scientists at Washington University in St. Louis corrected a mutation in the WFS1 gene which causes Wolfram syndrome, of which diabetes is one symptom. Then, they used CRISPR-Cas9 to edit human-induced pluripotent stem cells and target their differentiation into pancreatic beta cells. This creates an abundance of fully functional beta cells to be used in conjunction with gene therapy.

When the altered beta cells were transplanted into diabetic mice, blood glucose levels dropped and glycemic control was maintained for at least six months. Scientists are exploring whether this process can be used to effectively reverse or stop type 1 diabetes by editing a patient’s own beta cells. In addition, the abundance of cells created means that more testing can occur to develop specific medications or therapies to treat the disease.

More research is needed before gene editing can potentially be used as an approved treatment for type 1 diabetes, but researchers continue to learn more. Diabetes Research Connection (DRC) is interested to see what this technology may mean for the future of diabetes treatment and management and how it could evolve. Though not involved with this study, the DRC is committed to supporting research around type 1 diabetes and provides early-career scientists with critical funding for novel, peer-reviewed studies. To learn more about current projects and how to help, visit https://diabetesresearchconnection.org.

Learn More +

Unlimited access to all the essential project updates latest diabetes research news, and more.