DRC & Research News

This page shares the latest news in T1D research and DRC’s community.

Get the most recent diabetes research news, delivered straight to your inbox

Pills metformin

Potential Benefits of Incorporating C4H11N5 in Type 1 Diabetes Treatment

Metformin: A Potential Game-Changer in Type 1 Diabetes Management

The journey of managing diabetes is a complex one, impacted by a myriad of factors affecting blood sugar levels. One such factor is the type of medication utilized. For people living with type 2 diabetes, Metformin is a well-known medication, typically employed to regulate blood sugar levels. Recently, however, it has emerged into the spotlight for a different reason – its potential benefits in treating type 1 diabetes. This surprising finding can be traced back to a recent study examining Metformin’s impact on vascular health, presenting a new ray of hope for healthcare professionals and individuals diagnosed with type 1 diabetes. This novel application is especially noteworthy, as those living with type 1 diabetes frequently face an elevated risk of cardiovascular disease – a life-threatening condition if left unchecked.

The Groundbreaking Study

Researchers undertook a meticulously conducted double-blind, randomized, placebo-controlled trial. The participants were 90 children aged 8 to 18, all hailing from South Australia, and each one had been navigating life with type 1 diabetes for at least six months. These participants were split into two equally sized groups. One group received Metformin, while the other was given a placebo.

In addition to administering the trial’s medication, the researchers paid close attention to a few crucial parameters that are known to affect blood sugar levels. HbA1C, which provides an overview of blood sugar control over the past 2-3 months, insulin dose, and BMI were meticulously recorded. The team also incorporated the use of a continuous glucose monitoring (CGM) system, an advanced technology providing real-time glucose readings, an invaluable tool in achieving a granular level of insight into blood sugar control.

Dietary Factors and Blood Sugar Control

Throughout the trial, the participants’ diet was carefully observed, focusing on foods that vary in their glycemic index (GI), a measure that ranks carbohydrate-containing foods by how much they boost blood sugar levels. Foods with a high GI, including white rice and white bread, have a significant impact on blood glucose levels, causing spikes that can be detrimental if not managed effectively.

The importance of maintaining a balance in blood sugar levels was also emphasized throughout the trial. The target range for each participant was meticulously defined, aiming to keep it above 70mg/dl to prevent hypoglycemia (low blood sugar), and below a specified threshold to avoid hyperglycemia (high blood sugar). Frequent blood glucose monitoring played a critical role in maintaining this equilibrium, with the participants encouraged to use their blood glucose meter consistently.

Results and Potential Implications

The trial produced promising results. Over the year, the Metformin group showed distinct improvement in vascular function over the placebo group. This was most noticeable at the three-month interval. Interestingly, this was also when a significant decrease in HbA1C levels was recorded, indicating better control of blood sugar. By the 12-month mark, although the difference was lower, it remained significant. Furthermore, the Metformin group required less insulin, suggesting a decrease in insulin resistance – an encouraging development.

Another noteworthy finding was that children with above-average BMIs who were taking Metformin showed a marked improvement in vascular smooth muscle function. This improvement is indicative of better overall vascular health, which, in turn, can help reduce the risk of cardiovascular disease – a common complication for those living with type 1 diabetes.

While these findings offer hope for more diverse treatment options for people with type 1 diabetes, it’s important to note that the study didn’t run long enough to determine potential changes in vascular structure, only vascular function. Nevertheless, the potential implications are exciting.

Conclusion: Hope for the Future

If Metformin can indeed help in better managing type 1 diabetes, this could herald a new era in diabetes care. Improved diabetes management could lead to a higher quality of life for individuals living with the condition. With more research, the question of how to control blood sugar could become easier to answer, particularly if Metformin proves to be an effective part of the solution.

As we move forward, this type of groundbreaking study underlines the critical importance of continued research in the field of diabetes. At Diabetes Research Connection, we are committed to supporting advancements like this by funding novel research projects. We believe in the power of scientific discovery to transform lives and improve the future for those living with diabetes. We invite you to join us on this journey and support this life-changing mission. Visit https://diabetesresearchconnection.org to learn more about our initiatives and see how you can make a difference. Together, we can chart a brighter path toward managing, and ultimately curing, diabetes.

Learn More +
Alberto Quote

Connect For A Cure: November 2020 Newsletter

DRC has distributed over $400,000 to research projects like Dr. Hughes’s and Dr. Racine’s in 2020 alone! We have received three times the average amount of applications for funding of new projects over the past couple of months. View our “Support a Project” page to see what other research projects we are currently funding by clicking here. Take a look at our newsletter to see how great DRC’s 3rd Annual Dance for Diabetes Virtual Party was! Thank you to everyone who participated and donated to the event, DRC could not do what it does without the generous support of its donors and community.

Click this link to view our November newsletter that we mailed out previously this month about what we’ve been up to and the impact we are making together. It takes a community to connect for a cure!

 

 

Learn More +
Research Study for type 1 diabetes

Proactively Identifying Type 1 Diabetes

Identifying Type 1 Diabetes Development

Type 1 diabetes develops when the body mistakenly attacks and destroys insulin-producing beta cells. As the number of cells depletes, the body is unable to adequately control blood sugar levels. Researchers have been striving to find a way to prevent this destruction from occurring or to find a way to replace these cells so that the body can once again manage its own blood sugar.

A recent study took a closer look at exactly when this transformation begins to take place and beta cells begin dying off. They found that in many participants, the decline started at least six months prior to when patients would meet clinical requirements for a type 1 diabetes diagnosis. Diagnostic thresholds are currently a “fasting glucose of ≥126 mg/mL or 2-hour glucose of ≥200 mg/dL.”

The study involved 80 patients split into three categories: younger than age 11, ages 11 to 20, and older than age 20. All participants were first- or second-degree relatives of someone with type 1 diabetes and were diagnosed themselves while undergoing oral glucose tolerance tests (OGTTs) every six months. The results showed that across all age groups, C-peptide levels started declining around 12 months before diagnosis but showed the most significant changes in function in the 6 months prior to and 12 months following diagnosis.

By tracking these changes in individuals who are considered at-risk of developing type 1 diabetes, doctors may be able to catch declining beta-cell function early on and intervene with treatment before patients reach diagnostic thresholds for the disease. This could potentially be a way to prevent or slow the onset of type 1 diabetes through proactive immunotherapy.

More research is needed to further explore these findings and expand them to a larger group of participants. However, it provides researchers with insight on when type 1 diabetes may begin to develop and some changes to focus on. Diabetes Research Connection (DRC), though not involved with this study, supports early-career scientists in pursuing novel research studies around type 1 diabetes to help advance prevention and treatment efforts as well as minimizing complications, improving quality of life, and finding a cure. Learn more about current studies and how to support these projects by visiting https://diabetesresearchconnection.org.

Learn More +
Medical Technology

Helping Drive Technology Advancements

Diabetes Patients Are Helping Drive Technology Advancements

Managing type 1 diabetes is an around-the-clock job. Patients must always be aware of what their blood sugar level is, whether it is trending up or down, whether or not to administer insulin, and if they do need insulin, how much. While there have been many advancements in technology to help with monitoring and insulin administration, the development and approval process is often long and drawn out. There are a limited number of devices approved by the government for use.

Patients with type 1 diabetes have begun taking their health into their own hands and improving treatment options. There are free directions online for how patients can connect their continuous glucose monitor (CGM) and their insulin pump with their smartphone to create a closed-loop system that tracks their blood glucose and automatically administers insulin as necessary. This type of artificial pancreas is something that researchers and pharmaceutical companies have been working on for years, but to date, there is only one commercially available closed-loop system available for use in Canada.

Jonathan Garfinkel, a Ph.D. candidate in the Faculty of Arts at the University of Alberta, took his chances and used the patient-created instructions for setting up the closed-loop system two years ago, and it has been life-changing. Previously, he was having a lot of difficulty managing his blood sugar overnight, and it would drop dangerously low. With the closed-loop system, his blood sugar has become much stabler overnight, and he is not tasked with regularly doing finger pricks and figuring out insulin dosing on his own.

These advancements in technology that patients with diabetes are developing have prompted pharmaceutical companies to quicken their own pace when it comes to getting devices created and approved for commercial use. Patients are becoming increasingly more comfortable with technology and relying on smartphones, sensors, and other devices to help them stay abreast of their health.

Garfinkel himself is also working on a project to advance technology for diabetes treatment. He is in the process of developing “a more affordable glucose sensor that would sit on top of the skin, rather than being inserted subcutaneously.” It was a project he began in collaboration with Mojgan Daneshmand, an engineer and Canada Research Chair in Radio Frequency Microsystems for Communication and Sensing, who was unfortunately killed in a plane crash in January 2020. Garfinkel is continuing the work that they started together and was awarded a U of A seed grant to help.

There are so many young researchers with incredible potential who can benefit from funding that will allow them to carry out their plans and see the results. The Diabetes Research Connection provides up to $50K in funding to early-career scientists to empower them in moving forward with their novel research projects focused on type 1 diabetes. These opportunities open doors to improving the prevention, treatment, and management of type 1 diabetes, as well as improving quality of life, minimizing complications, and one day finding a cure. Learn more by visiting https://diabetesresearchconnection.org.

Learn More +
Sleep Disturbances Common with Type 1 Diabetes -Photo by Marcus Aurelius from Pexels

Sleep Disturbances with Type 1 Diabetes

Sleep Disturbances Common with T1D

Type 1 diabetes is a disease that must be monitored around the clock. When children are awake, it is easier to tell when blood sugar may be spiking too high or dropping too low. At night, this is more challenging, and it is essential to continue testing blood sugar levels to stay within the target range and administer insulin as necessary.

Children typically rely on their parents to manage their diabetes and monitor blood sugar, whether done manually or through a continuous glucose monitor (CGM). A recent study found that children who use a CGM often sleep better at night, but it is their parents who have more disturbances in their sleep due to reacting to CGM data.

As part of a larger study, researchers evaluated the sleep quality of 46 parents of children with type 1 diabetes. The children were between the ages of 2 and 5, and some used CGMs while others did not. Parents reported on the time their children went to bed, woke up, and how long they slept. The average was 10.4 hours per night. Also, all 11 families who used CGMs wore accelerometers that tracked their sleep patterns for a minimum of four nights. The accelerometer showed an average of 9.8 hours of sleep per night for children.

According to the study, “Among the full cohort, 63% of parents reported checking their child’s blood glucose levels at least a few nights per week. Parents of children using CGMs reported a higher frequency of nighttime blood glucose monitoring compared with parents of children without a CGM.”

The percentage of parents who experienced sleep disturbances concerning blood glucose monitoring was noticeably higher than the percentage of children, at 78.3% and 17% respectively. Parents of children with CGMs reported higher levels of sleep disturbance, especially when the child’s diabetes was more difficult to manage. Additional research with a larger group of participants across a longer period of time is necessary to better understand the impact of diabetes management on sleep for parents and children.

It is important for physicians to keep in mind not just the impact a CGM or other device could have on the child’s health and quality of life, but also on the parent. Parents benefit from having proper support systems in place and information to help them cope with the challenges of managing their child’s type 1 diabetes.

Diabetes Research Connection, though not involved in this study, is committed to supporting early-career scientists focused on studying type 1 diabetes and ways to improve prevention, treatment, and quality of life, as well as one day finding a cure. One hundred percent of donations go directly to the scientists for their research. To learn more about current projects and how to help, visit https://diabetesresearchconnection.org.

Learn More +
Researcher

Enhancing Protection for Islets

Enhancing Protection for Islets Following Transplantation

One treatment approach for type 1 diabetes that researchers have been experimenting with and refining for more than 20 years is islet transplantation. The goal is to take insulin-producing islets from cadavers (or another source) and transplant them into individuals with type 1 diabetes so that these cells will thrive and allow the body to begin producing insulin once again.

A common challenge with this approach is protecting the cells from immune system attack or cell death from lack of oxygen. A recent study has found a way to overcome some of these obstacles by encapsulating the islets in a jelly-like substance made of collagen. This helps create a scaffolding that will not initiate an immune response yet contains the islets while allowing them to grow new blood vessels that will ultimately provide them with oxygen. Since this blood vessel regrowth can take time, the researchers also injected the scaffolding with calcium peroxide. As the calcium peroxide breaks down, it releases oxygen which is used to keep the cells alive as they settle in and begin working.

In traditional organ transplantation, the organ is surgically connected to the circulatory system meaning that the organ automatically begins receiving the oxygen and nutrients it needs for survival. Islet transplants do not work this way since the cells are not a solid organ. In addition, the cells are typically injected into the liver rather than the pancreas where they would normally occur. There is a greater risk of the pancreas having a negative reaction and destroying the islets than the liver.

The researchers tested this new bioscaffold in diabetic mice. Some mice received islets on their own, some received islets in the bioscaffold, and some received islets and calcium peroxide in the bioscaffold. The diabetic mice who received the islets and calcium peroxide demonstrated greater blood glucose control over four weeks than the other two groups. The team is now looking at the possibility of injecting the scaffolding with stem cells as well to further enhance islet survival and function.

These types of advancements in treatment are encouraging when it comes to type 1 diabetes. It is expected that the U.S. Food and Drug Administration (FDA) will approve islet transplantation as a valid treatment for T1D, rather than an experimental treatment, this year. This could increase the number of options available to patients for effectively managing the disease.

Diabetes Research Connection continues to stay abreast of changes in the field and provides critical funding for early-career scientists pursuing novel research around T1D. Learn more about current projects and how to support these efforts by visiting https://diabetesresearchconnection.org.

Learn More +
Diabetes Pills

Reduced Out-of-Pocket Insulin Costs for Seniors Through Medicare

Out-of-Pocket Insulin Costs for Seniors

The cost of buying insulin can quickly add up, but this medication is life-sustaining for individuals with type 1 diabetes. Many seniors are on a fixed income, and some may struggle to afford the out-of-pocket costs for insulin, which can lead to rationing their supply. This can be incredibly dangerous to their health.

The Centers for Medicare & Medicaid Services (CMS) recently announced that it would implement measures to help curb these costs for seniors. Many Medicare Part D prescription drug plans and Medicare Advantage plans with prescription drug coverage will now be offering lower insulin costs to seniors, capping the copay at $35 for a month’s supply. This is part of the new Part D Senior Savings Model and will cover “both pen and vial dosage forms for rapid-acting, short-acting, intermediate-acting, and long-acting insulins.”

Insulin manufacturers and Part D sponsors are working together to offer this market-based solution that enables them to provide deeper discounts to seniors and fixed, predictable copays in the coverage gap. According to CMS, “beneficiaries who use insulin and join a plan participating in the model could see an average out-of-pocket savings of $446, or 66 percent, for their insulins, funded in part by manufacturers paying an estimated additional $250 million of discounts over the five years of the model.”

Seniors will be able to go on to the CMS website and compare their prescription drug plan options to find a participating sponsor and plan that fits their needs. Enrollment would begin in the fall for coverage starting on January 1, 2021. There have also been numerous actions that have been taken in response to COVID-19 to support individuals with type 1 diabetes in accessing and affording insulin.

It is encouraging to see drug manufacturers and insurance companies making changes to improve access and affordability of life-sustaining medications such as insulin. Diabetes Research Connection (DRC) will continue to stay abreast of these trends and how they impact diabetes management. DRC provides critical funding for researchers focused on type 1 diabetes to find a cure and improve prevention and treatment options as well as the quality of life. Click to learn more about current projects and provide support.

Learn More +
Laboratory Image

Preserving Endogenous Insulin Production

Preserving Endogenous Insulin Production in Newly Diagnosed Type 1 Diabetes Patients

A hallmark of type 1 diabetes is the body loses its ability to naturally produce enough (or any) insulin to effectively manage blood glucose levels. This is due to the mistaken destruction of insulin-producing beta cells by the immune system, a process that researchers are continually learning more about. In many cases, when type 1 diabetes (T1D) is first diagnosed, there is a short window of time (up to about six months) where the body still creates insulin, but not enough to meet demand.

A recent study explored a new way to try to preserve endogenous insulin production and reduce the amount of insulin newly diagnosed patients required. The study involved 84 patients ages 6 to 21 who had been diagnosed with T1D within 100 days of the start of the trial. Approximately two-thirds of participants were given the drug golimumab, while the other one-third received a placebo. Golimumab is an anti-tumor-necrosis-factor (TNF) therapy that is already approved by the Food and Drug Administration (FDA) for the treatment of rheumatoid arthritis, ulcerative colitis, and other autoimmune conditions. It has not yet been approved for use in patients with T1D.

The patients who received golimumab self-administered the drug via injection every two weeks. Results showed that these patients achieved markedly better glycemic control that patients receiving the placebo. After 52 weeks of treatment, “41.4% of participants receiving golimumab had an increase or less than 5% decrease in C-peptide compared to only 10.7% in the placebo group.”

Furthermore, patients who were still in the “honeymoon phase” of their diabetes, or the first 3-6 months after diagnosis where there is still some endogenous insulin production and not as much injected insulin is needed, also showed improvement once transitioning out this phase and continuing to take golimumab. Those patients showed a smaller increase in injected insulin than the placebo group requiring just 0.07 units per kilogram more per day versus 0.24 units per kilogram per day respectively. Another notable improvement is that patients between the ages of 6 and 18 experienced 36% fewer episodes of level 2 hypoglycemia, a condition that can be potentially life-threatening and negatively impact the quality of life.

Since golimumab is already FDA-approved for other conditions, these phase 2 study results play an important role in moving the process forward to show that it may be an effective treatment for T1D as well. This therapy may be able to help newly diagnosed patients retain some of their body’s natural insulin-producing abilities and decrease the amount of injected insulin needed to maintain good glycemic control.

Golimumab may become another option for patients with type 1 diabetes in the future and change how the disease is managed when caught and treated early on. It is encouraging to see new ways to preserve beta-cell function. Diabetes Research Connection (DRC) is interested to see how this study unfolds and whether golimumab is approved for the treatment of type 1 diabetes.

Although not involved in this study, DRC supports early-career scientists in pursuing studies like these and other projects related to preventing and curing T1D as well as minimizing complications and improving the quality of life for individuals living with the disease. Scientists can receive up to $50K in funding to advance their research. Click to learn more about current projects and provide support.

Learn More +
Pancreatic beta cell regeneration

Examining Pancreatic Beta Cell Regeneration Processes

Researchers often use cell cultures and tissue slices to study the function and processes of various cells. One of the challenges of this approach, however, is the viability of these samples. For instance, pancreatic tissue slices typically show significant cell death after less than 24 hours due to poor oxygenation. This means that only short-term studies are possible, using samples while they are most viable and representative of the integrity of the native organ.

But, researchers are looking to change that. In a recent study, scientists altered how human pancreatic slices (HPSs) are cultured and managed to preserve function for 10 days or more. This is significant when it comes to being able to conduct longer-term longitudinal studies. Studies were also conducted on tissue samples from non-transgenic mice.

Traditionally, HPSs are preserved in standard transwell dishes. In this model, tissue is placed on top of a liquid-permeable membrane and surrounded with an air-liquid medium. However, oxygenation begins to decrease within several hours, and signs of anoxia appear. A new approach uses perfluorocarbon (PFC)-based dishes. This model places tissue atop a liquid-impermeable membrane providing direct contact with oxygen. An air-liquid medium also surrounds the slice. A variety of testing shows that PFC-based cultures have improved oxygenation and lower levels of anoxia.

In turn, this allowed scientists to more effectively study pancreatic beta-cell regeneration processes. HPSs retain “near-intact cytoarchitecture” of the organ in its native state in the body. Combined with the longer-term viability of the samples in the PFC-based setting, researchers were able to focus in on how and where beta cells were regenerating. They used HPSs from non-diabetic individuals as well as those with type 2 diabetes to enhance their understanding of how to stimulate this regeneration and improve insulin production.

When samples were left to rest for 24 hours to reduce the impact of stress from slicing and then treated with Bone morphogenetic protein 7 (BMP-7) proteins, scientists found that they showed higher levels of beta-cell regeneration than controls that were not treated with BMP-7. Much of this cell development occurred in regions corresponding to pancreatic ducts. Some new cells emerged from existing beta cells, while others transitioned from alpha to beta cells.

Improved oxygenation methods are changing how scientists are able to interact with HPSs and the types of testing they are able to conduct. According to the study, “Our goal in refining the conditions for the long-term survival of HPS was to allow for the real-time detection and quantification of endocrine cell regeneration.” While more in-depth and extensive studies are needed, these findings may lead the way toward improved understanding of the pathology of pancreatic beta-cell regeneration and new treatment options for individuals with type 1 diabetes.

Diabetes Research Connection (DRC) is committed to supporting these types of advancements and efforts by providing critical funding to early-career scientists pursuing novel, peer-reviewed research related to type 1 diabetes. With adequate funding, scientists are able to bring their ideas to life and contribute to not only greater understanding of the disease, but improved methods and therapies for diagnosing, treating, managing, and eventually curing type 1 diabetes. Learn more about current projects and support these efforts by visiting https://diabetesresearchconnection.org.

 

Learn More +
iPhone desktop

Could Insulin Management be Controlled with an App?

Determining the appropriate amount of insulin to administer in response to drops in blood sugar can be challenging, but it is something that individuals with type 1 diabetes must do daily in order to manage their health. If left untreated, low blood sugar (or hypoglycemia) can be potentially fatal.

A team of researchers and physicians at Oregon Health & Science University (OHSU) are looking to improve diabetes management through a new app called DailyDose. While there are similar types of apps that exist, what sets DailyDose apart is that has demonstrated statistically relevant outcomes through multiple clinical studies. The AI algorithm for the app was originally developed entirely through a mathematical simulator, but when real-world data was used, the recommendations generated by the app aligned with recommendations provided by physicians, or were still considered safe, more than 99% of the time. In addition, improved glucose control was achieved. This was determined after 100 weeks of testing conducted in four-week trials.

Each trial involved 16 patients with type 1 diabetes and combined information from a continuous glucose monitor or wireless insulin pen with the app. Nearly 68% of the time, the recommendations generated agreed with those of physicians.

These findings are important because they show that the app may be effective in supporting individuals with type 1 diabetes in reducing risk of hypoglycemia by better managing insulin administration and blood glucose levels between appointments with their endocrinologist. Larger clinical trials are needed over longer periods of time to further determine the accuracy and effectiveness of the app in relation to other treatment strategies.

Technology is becoming increasingly more popular and advanced in terms of managing type 1 diabetes. There are numerous devices and apps already available and more in the works. This gives individuals with type 1 diabetes a wider variety of options in order to determine what works best for their needs and lifestyle.

Though not involved with this study, the Diabetes Research Connection (DRC) strives to continue growing understanding of type 1 diabetes and improving prevention and treatment methods as well as one day finding a cure. Early-career scientists can receive critical funding through the DRC to pursue novel research studies around T1D. Learn more about current projects and how to support these efforts at http://diabetesresearchconnection.org.

Learn More +

OUR PROJECTS

See our approved research projects and campaigns.

Role of the integrated stress response in type 1 diabetes pathogenesis
In individuals with type 1 diabetes (T1D), the insulin-producing beta cells are spontaneously destroyed by their own immune system. The trigger that provokes the immune system to destroy the beta cells is unknown. However, accumulating evidence suggest that signals are perhaps first sent out by the stressed beta cells that eventually attracts the immune cells. Stressed cells adapt different stress mitigation systems as an adaptive response. However, when these adaptive responses go awry, it results in cell death. One of the stress response mechanisms, namely the integrated stress response (ISR) is activated under a variety of stressful stimuli to promote cell survival. However, when ISR is chronically activated, it can be damaging to the cells and can lead to cell death. The role of the ISR in the context of T1D is unknown. Therefore, in this DRC funded study, we propose to study the ISR in the beta cells to determine its role in propagating T1D.
Wearable Skin Fluorescence Imaging Patch for the Detection of Blood Glucose Level on an Engineered Skin Platform
zhang
A Potential Second Cure for T1D by Re-Educating the Patient’s Immune System
L Ferreira
Validating the Hypothesis to Cure T1D by Eliminating the Rejection of Cells From Another Person by Farming Beta Cells From a Patient’s Own Stem Cells
Han Zhu
Taming a Particularly Lethal Category of Cells May Reduce/Eliminate the Onset of T1D
JRDwyer 2022 Lab 1
Can the Inhibition of One Specific Body Gene Prevent Type 1 Diabetes?
Melanie
Is Cholesterol Exacerbating T1D by Reducing the Functionality and Regeneration Ability of Residual Beta Cells?
Regeneration Ability of Residual Beta Cells
A Call to Question… Is T1D Caused by Dysfunctionality of Two Pancreatic Cells (β and α)?
Xin Tong
Novel therapy initiative with potential path to preventing T1D by targeting TWO components of T1D development (autoimmune response and beta-cell survival)
flavia pecanha