DRC & Research News

This page shares the latest news in T1D research and DRC’s community.

Get the most recent diabetes research news, delivered straight to your inbox

Fruit Fly Used in Research

Stanford Researchers Discover Insulin-Decreasing Hormone in Flies, Humans

Fruit Fly Used in ResearchAn insulin-regulating hormone that, until now, only had been postulated to exist has been identified by researchers at the Stanford University School of Medicine.

The hormone, called limostatin after the Greek goddess of starvation, Limos, tamps down circulating insulin levels during recovery from fasting or starvation. In this way, it ensures that precious nutrients remain in the blood long enough to rebuild starving tissues, rather than being rapidly squirreled away into less-accessible fat cells.

The researchers first discovered limostatin in fruit flies but then quickly identified a protein with a similar function in humans.

“Starvation or famine is an ancient, ever-present specter faced by all living organisms,” said Seung Kim, MD, PhD, professor of developmental biology. “The ways to deal with it metabolically are likely to be ancient and conserved. This research clearly connects the dots between flies and humans, and identifies a new potential way to regulate insulin output in humans.”

In particular, members of a family with an inherited mutation in the human analog of limostatin exhibited many of the same physiological characteristics as flies genetically engineered to be unable to produce limostatin — namely, high levels of circulating insulin, low blood sugar levels and a tendency toward early onset obesity.

A paper describing the research findings was published in Cell Metabolism. Kim is the senior author, and graduate student Ronald Alfa is the lead author.

The metabolic dance

Insulin is a key player in the complicated metabolic dance shared by nearly all organisms. Its importance can hardly be overstated. After a meal, animals and humans produce insulin in response to the increase in blood sugars that occur as a meal is digested. This insulin stimulates the storage of circulating sugars into muscle and fat cells for future use. Too little insulin, or an inability of the body to respond correctly to its signal, causes a dangerous spike in blood sugar levels. Conversely, too much insulin can cause a rapid drop. Both conditions can be life-threatening, and ongoing swings in blood sugar levels can lead to complications, such as blindness, poor circulation and kidney failure.

“This work has critical ramifications for our understanding of metabolism, and has the potential to transform our approach to treating diseases like diabetes,” said Domenico Accili, MD, director of the Columbia University Diabetes and Endocrinology Research Center and Columbia’s Russell Barry Foundation Professor of Diabetes.

“The discovery of limostatin, a new hormone that can act to decrease insulin release, is an important advance,” added Accili, who was not involved with the research. “The notion that mammals express a related family of intestinal hormones that can affect insulin secretion may inform new efforts to find drugs that combat diabetes in humans.”

 

http://www.medicalnewstoday.com/releases/288946.php?tw

 

Learn More +

OUR PROJECTS

See our approved research projects and campaigns.

Role of the integrated stress response in type 1 diabetes pathogenesis
In individuals with type 1 diabetes (T1D), the insulin-producing beta cells are spontaneously destroyed by their own immune system. The trigger that provokes the immune system to destroy the beta cells is unknown. However, accumulating evidence suggest that signals are perhaps first sent out by the stressed beta cells that eventually attracts the immune cells. Stressed cells adapt different stress mitigation systems as an adaptive response. However, when these adaptive responses go awry, it results in cell death. One of the stress response mechanisms, namely the integrated stress response (ISR) is activated under a variety of stressful stimuli to promote cell survival. However, when ISR is chronically activated, it can be damaging to the cells and can lead to cell death. The role of the ISR in the context of T1D is unknown. Therefore, in this DRC funded study, we propose to study the ISR in the beta cells to determine its role in propagating T1D.
Wearable Skin Fluorescence Imaging Patch for the Detection of Blood Glucose Level on an Engineered Skin Platform
zhang
A Potential Second Cure for T1D by Re-Educating the Patient’s Immune System
L Ferreira
Validating the Hypothesis to Cure T1D by Eliminating the Rejection of Cells From Another Person by Farming Beta Cells From a Patient’s Own Stem Cells
Han Zhu
Taming a Particularly Lethal Category of Cells May Reduce/Eliminate the Onset of T1D
JRDwyer 2022 Lab 1
Can the Inhibition of One Specific Body Gene Prevent Type 1 Diabetes?
Melanie
Is Cholesterol Exacerbating T1D by Reducing the Functionality and Regeneration Ability of Residual Beta Cells?
Regeneration Ability of Residual Beta Cells
A Call to Question… Is T1D Caused by Dysfunctionality of Two Pancreatic Cells (β and α)?
Xin Tong
Novel therapy initiative with potential path to preventing T1D by targeting TWO components of T1D development (autoimmune response and beta-cell survival)
flavia pecanha