DRC & Research News

This page shares the latest news in T1D research and DRC’s community.

Get the most recent diabetes research news, delivered straight to your inbox

Medical Technology

Helping Drive Technology Advancements

Diabetes Patients Are Helping Drive Technology Advancements

Managing type 1 diabetes is an around-the-clock job. Patients must always be aware of what their blood sugar level is, whether it is trending up or down, whether or not to administer insulin, and if they do need insulin, how much. While there have been many advancements in technology to help with monitoring and insulin administration, the development and approval process is often long and drawn out. There are a limited number of devices approved by the government for use.

Patients with type 1 diabetes have begun taking their health into their own hands and improving treatment options. There are free directions online for how patients can connect their continuous glucose monitor (CGM) and their insulin pump with their smartphone to create a closed-loop system that tracks their blood glucose and automatically administers insulin as necessary. This type of artificial pancreas is something that researchers and pharmaceutical companies have been working on for years, but to date, there is only one commercially available closed-loop system available for use in Canada.

Jonathan Garfinkel, a Ph.D. candidate in the Faculty of Arts at the University of Alberta, took his chances and used the patient-created instructions for setting up the closed-loop system two years ago, and it has been life-changing. Previously, he was having a lot of difficulty managing his blood sugar overnight, and it would drop dangerously low. With the closed-loop system, his blood sugar has become much stabler overnight, and he is not tasked with regularly doing finger pricks and figuring out insulin dosing on his own.

These advancements in technology that patients with diabetes are developing have prompted pharmaceutical companies to quicken their own pace when it comes to getting devices created and approved for commercial use. Patients are becoming increasingly more comfortable with technology and relying on smartphones, sensors, and other devices to help them stay abreast of their health.

Garfinkel himself is also working on a project to advance technology for diabetes treatment. He is in the process of developing “a more affordable glucose sensor that would sit on top of the skin, rather than being inserted subcutaneously.” It was a project he began in collaboration with Mojgan Daneshmand, an engineer and Canada Research Chair in Radio Frequency Microsystems for Communication and Sensing, who was unfortunately killed in a plane crash in January 2020. Garfinkel is continuing the work that they started together and was awarded a U of A seed grant to help.

There are so many young researchers with incredible potential who can benefit from funding that will allow them to carry out their plans and see the results. The Diabetes Research Connection provides up to $50K in funding to early-career scientists to empower them in moving forward with their novel research projects focused on type 1 diabetes. These opportunities open doors to improving the prevention, treatment, and management of type 1 diabetes, as well as improving quality of life, minimizing complications, and one day finding a cure. Learn more by visiting https://diabetesresearchconnection.org.

Learn More +
Researcher

Enhancing Protection for Islets

Enhancing Protection for Islets Following Transplantation

One treatment approach for type 1 diabetes that researchers have been experimenting with and refining for more than 20 years is islet transplantation. The goal is to take insulin-producing islets from cadavers (or another source) and transplant them into individuals with type 1 diabetes so that these cells will thrive and allow the body to begin producing insulin once again.

A common challenge with this approach is protecting the cells from immune system attack or cell death from lack of oxygen. A recent study has found a way to overcome some of these obstacles by encapsulating the islets in a jelly-like substance made of collagen. This helps create a scaffolding that will not initiate an immune response yet contains the islets while allowing them to grow new blood vessels that will ultimately provide them with oxygen. Since this blood vessel regrowth can take time, the researchers also injected the scaffolding with calcium peroxide. As the calcium peroxide breaks down, it releases oxygen which is used to keep the cells alive as they settle in and begin working.

In traditional organ transplantation, the organ is surgically connected to the circulatory system meaning that the organ automatically begins receiving the oxygen and nutrients it needs for survival. Islet transplants do not work this way since the cells are not a solid organ. In addition, the cells are typically injected into the liver rather than the pancreas where they would normally occur. There is a greater risk of the pancreas having a negative reaction and destroying the islets than the liver.

The researchers tested this new bioscaffold in diabetic mice. Some mice received islets on their own, some received islets in the bioscaffold, and some received islets and calcium peroxide in the bioscaffold. The diabetic mice who received the islets and calcium peroxide demonstrated greater blood glucose control over four weeks than the other two groups. The team is now looking at the possibility of injecting the scaffolding with stem cells as well to further enhance islet survival and function.

These types of advancements in treatment are encouraging when it comes to type 1 diabetes. It is expected that the U.S. Food and Drug Administration (FDA) will approve islet transplantation as a valid treatment for T1D, rather than an experimental treatment, this year. This could increase the number of options available to patients for effectively managing the disease.

Diabetes Research Connection continues to stay abreast of changes in the field and provides critical funding for early-career scientists pursuing novel research around T1D. Learn more about current projects and how to support these efforts by visiting https://diabetesresearchconnection.org.

Learn More +
Environmental Factors T1D

Studying Environmental Factors Related to Type 1 Diabetes

While genetics do play a role in the development of type 1 diabetes (T1D), researchers also believe that environment contributes as well. There is no singular cause of T1D, and all of its risk and protective factors are yet unknown. However, one study is striving to build a comprehensive understanding of diverse environmental factors and the role they may play in children developing T1D.

Researchers launched The Environmental Determinants of Islet Autoimmunity (ENDIA) several years ago and recently received an additional $8.25M in funding to keep it going for another three years. Over the past seven years, they have enrolled 1,500 participants, which includes babies ranging from pregnancy up to six months in age who have at least one immediate relative with T1D. The babies are seen every three to six months until they reach at least age three.

The study looks at a wide range of environmental factors in an effort to gain a better understanding of what increases or decreases risk of developing type 1 diabetes. Factors include “growth during pregnancy and early life, the method of delivery (natural birth versus caesarean section), the mother’s nutrition during pregnancy, infant feeding (breastfeeding and/or formula), the duration of breastfeeding and the child’s nutrition, the child’s immune system and when the child received vaccines and exposure to viruses during pregnancy and early life.”

Not only did it take a long time to recruit participants, it will take several years to gather and analyze the long-term data in order to identify potential risk or protective factors and how each child was affected. With millions of people living with T1D, this study may help to improve treatment and prevention in the future, possibly leading to a vaccine one day.

Diabetes Research Connection (DRC) will continue to follow this study and see how results progress and what discoveries are made. In the meantime, the organization provides critical funding for early career scientists pursuing research on various facets of T1D. Studies are focused on preventing or curing diabetes, as well as reducing complications and improving quality of life for individuals living with the disease. Visit https://diabetesresearchconnection.org to learn more about current projects and support these efforts.

Learn More +
Stem Cells

Scientists Found a Way to Generate Insulin-Producing Beta Cells

More than one million people in the United States are living with type 1 diabetes according to statistics from the Centers for Disease Control and Prevention. There is a strong push to improve management of the disease and find a cure. The more researchers learn about T1D, the more precise their prevention and treatment methods become.

A recent study reveals that improvements in stem cell therapy have reversed T1D in mice for at least nine months and, in some cases, for more than a year. One of the challenges that scientists have faced with using human pluripotent stem cells (hPSCs) is that it can be difficult to zero differentiation in one specific type of cell. Often multiple types of pancreatic cells are produced. While there may be an abundance of cells that scientists want, the infiltration of excess cells that are not needed diminishes their impact (even though they are not harmful).

Scientists at the Washington University School of Medicine in St. Louis have found a way to generate insulin-producing beta cells without creating as many irrelevant cells. Their approach focuses on the cell’s cytoskeleton, which is its inner framework. Through this process, they were able to produce vast amounts of beta cells that are able to normalize blood glucose levels.

When transplanted into severely diabetic mice (blood glucose levels above 500 mg/dL), the cells effectively reversed the effects of diabetes and brought blood sugar levels down into target range within two weeks. Normoglycemia was maintained for at least nine months.

This is a major step forward in stem cell therapy and the use of hPSCs to potentially cure diabetes one day. There is still more testing and research that needs to be done before this approach is applied to human trials.

Ongoing research is essential for finding a cure for T1D. Diabetes Research Connection supports these efforts by providing critical funding to early-career scientists pursuing novel research studies on the disease. By giving them the means to complete their projects, these researchers can continue to advance knowledge and treatment options. Learn more about current studies and how to help by visiting https://diabetesresearchconnection.org.

Learn More +
Person Putting a Drop on Test Tube

Improved Beta Cell Function of Transplanted Islet Cells in T1D

One of the major challenges of using transplanted islet cells in the treatment of type 1 diabetes is cell death. Due to cellular stressors, poor oxygenation or vascularization, autoimmune response, and other factors, not all transplanted cells survive, and this can make treatment less effective. The body needs functional insulin-producing islet cells in order to effectively regulate blood sugar levels.

A recent study found that coculturing allogeneic islet beta cells with mesenchymal stromal cells (MSCs) may improve not only cell survival, but function as well. After donor cells are procured, they must be cultured and tested before being transplanted. This can generate significant cellular stress including hypoxia or low oxygenation, which can in turn lead to cell death. However, researchers found that MSCs support islet cells during this culture period by improving oxygenation and insulin secretion.

They also found that in response to these stressors, MSCs actually initiate mitochondria transfer to the islet beta cells.  This may improve mitochondrial ATP generation which plays an integral role in controlling insulin secretion. As a result, as glucose levels around the beta cells increased, so did their production and secretion of insulin.

Researchers experimented with this coculturing process with both mouse cells and human cells and found that human cells have a greater response and higher level of MSC-mediated mitochondria transfer that occurs. Though more extensive testing is necessary, these results show that MSCs may be an essential part of clinical islet transplantation and improved efficacy of beta cell function in treating individuals with type 1 diabetes.

Diabetes Research Connection (DRC) is interested to see how this study evolves moving forward and what it may mean for future therapeutic treatments for the disease. The DRC, though not involved in this study, provides critical funding for early career scientists pursuing novel, peer-reviewed research projects for type 1 diabetes. Click to learn more about current projects and provide support.

Learn More +
T1D Vaccine

Type 1 Diabetes Vaccine Shows Positive Results

In an effort to prevent or delay the onset of type 1 diabetes, researchers have been striving to create an effective vaccine. One of the challenges is that there are many different subgroups of type 1 diabetes, meaning not all patients respond the same. A recent study found that patients who had a specific human leukocyte antigen (HLA) showed a “positive and statistically significant dose-dependent treatment response” to the Diamyd vaccine, especially when given four doses rather than two.

Compared to patients who received a placebo, those who received a higher number of doses of the Diamyd vaccine had a “statistically significant treatment effect of approximately 60%” within 15 months. These findings may help to advance the development of antigen-specific immunotherapy options for individuals with type 1 diabetes leading to improved treatment or management of the disease.

Diabetes Research Connection (DRC) is interested to see how this vaccine continues to evolve moving forward and what it could mean for the prevention of type 1 diabetes in the future. Though not involved with this study, the DRC provides early career scientists with funding necessary to conduct novel, peer-reviewed research projects around type 1 diabetes in an effort to improve understanding, prevention, treatment, and management of the disease. To learn more or donate to a current project, visit https://diabetesresearchconnection.org.

Learn More +

OUR PROJECTS

See our approved research projects and campaigns.

Role of the integrated stress response in type 1 diabetes pathogenesis
In individuals with type 1 diabetes (T1D), the insulin-producing beta cells are spontaneously destroyed by their own immune system. The trigger that provokes the immune system to destroy the beta cells is unknown. However, accumulating evidence suggest that signals are perhaps first sent out by the stressed beta cells that eventually attracts the immune cells. Stressed cells adapt different stress mitigation systems as an adaptive response. However, when these adaptive responses go awry, it results in cell death. One of the stress response mechanisms, namely the integrated stress response (ISR) is activated under a variety of stressful stimuli to promote cell survival. However, when ISR is chronically activated, it can be damaging to the cells and can lead to cell death. The role of the ISR in the context of T1D is unknown. Therefore, in this DRC funded study, we propose to study the ISR in the beta cells to determine its role in propagating T1D.
Wearable Skin Fluorescence Imaging Patch for the Detection of Blood Glucose Level on an Engineered Skin Platform
zhang
A Potential Second Cure for T1D by Re-Educating the Patient’s Immune System
L Ferreira
Validating the Hypothesis to Cure T1D by Eliminating the Rejection of Cells From Another Person by Farming Beta Cells From a Patient’s Own Stem Cells
Han Zhu
Taming a Particularly Lethal Category of Cells May Reduce/Eliminate the Onset of T1D
JRDwyer 2022 Lab 1
Can the Inhibition of One Specific Body Gene Prevent Type 1 Diabetes?
Melanie
Is Cholesterol Exacerbating T1D by Reducing the Functionality and Regeneration Ability of Residual Beta Cells?
Regeneration Ability of Residual Beta Cells
A Call to Question… Is T1D Caused by Dysfunctionality of Two Pancreatic Cells (β and α)?
Xin Tong
Novel therapy initiative with potential path to preventing T1D by targeting TWO components of T1D development (autoimmune response and beta-cell survival)
flavia pecanha