DRC & Research News

This page shares the latest news in T1D research and DRC’s community.

Get the most recent diabetes research news, delivered straight to your inbox

Environmental Factors T1D

Studying Environmental Factors Related to Type 1 Diabetes

While genetics do play a role in the development of type 1 diabetes (T1D), researchers also believe that environment contributes as well. There is no singular cause of T1D, and all of its risk and protective factors are yet unknown. However, one study is striving to build a comprehensive understanding of diverse environmental factors and the role they may play in children developing T1D.

Researchers launched The Environmental Determinants of Islet Autoimmunity (ENDIA) several years ago and recently received an additional $8.25M in funding to keep it going for another three years. Over the past seven years, they have enrolled 1,500 participants, which includes babies ranging from pregnancy up to six months in age who have at least one immediate relative with T1D. The babies are seen every three to six months until they reach at least age three.

The study looks at a wide range of environmental factors in an effort to gain a better understanding of what increases or decreases risk of developing type 1 diabetes. Factors include “growth during pregnancy and early life, the method of delivery (natural birth versus caesarean section), the mother’s nutrition during pregnancy, infant feeding (breastfeeding and/or formula), the duration of breastfeeding and the child’s nutrition, the child’s immune system and when the child received vaccines and exposure to viruses during pregnancy and early life.”

Not only did it take a long time to recruit participants, it will take several years to gather and analyze the long-term data in order to identify potential risk or protective factors and how each child was affected. With millions of people living with T1D, this study may help to improve treatment and prevention in the future, possibly leading to a vaccine one day.

Diabetes Research Connection (DRC) will continue to follow this study and see how results progress and what discoveries are made. In the meantime, the organization provides critical funding for early career scientists pursuing research on various facets of T1D. Studies are focused on preventing or curing diabetes, as well as reducing complications and improving quality of life for individuals living with the disease. Visit https://diabetesresearchconnection.org to learn more about current projects and support these efforts.

Learn More +
Pregnancy diabetes

Multiple Daily Injections May Improve Glycemic Control During Pregnancy for Women with T1D

Effectively managing blood sugar can be difficult in normal situations, but it can be even more challenging during pregnancy. Women must be cognizant of not only their own health, but also that of their unborn child. Infants are at risk for neonatal hypoglycemia. A recent study examined the impact of multiple daily injections (MDI) versus using an insulin pump on glycemic control during pregnancy for women with type 1 diabetes.

The study involved 123 women using MDI therapy and 125 women with insulin pumps. The researchers based the study on the treatment the women were already using prior to the trial; they did not assign a treatment method. Participants spanned multiple countries including the United States, Canada, England, Ireland, Scotland, Spain, and Italy. Women entered the study during their first trimester, and it lasted until they were at 34 weeks of gestation.

During this time, HbA1c levels were measured. The results showed that both treatment methods were equally effective during the first trimester with no statistically significant differences. However, at 34 weeks gestation, women who used MDI therapy showed a greater decrease in HbA1c levels versus women using insulin pumps. In addition, insulin pump users reported higher levels of gestational hypertension, neonatal hypoglycemia, and neonatal intensive care unit admissions for longer than 24 hours. However, these women also reported lower levels of hypoglycemia-related anxiety than those using MDI therapy, but also had lower levels of general well-being.

Overall, it appeared that MDI therapy resulted in greater decreases in HbA1c levels and improved glycemic control. There is still more research necessary, however, to verify these results. There were several factors that may have influenced findings and outcomes.

This study shows the importance of understanding the effects of T1D on different conditions such as pregnancy and the value of researching various treatment options to help women make more informed decisions regarding their health. Though not involved in this study, the Diabetes Research Connection follows the latest trends and developments in the field and supports early career scientists by providing critical funding for novel research regarding T1D. Continued funding is essential for advancing research and diabetes care. To learn more, visit http://diabetesresearchconnection.org.

Learn More +


See our approved research projects and campaigns.

Role of the integrated stress response in type 1 diabetes pathogenesis
In individuals with type 1 diabetes (T1D), the insulin-producing beta cells are spontaneously destroyed by their own immune system. The trigger that provokes the immune system to destroy the beta cells is unknown. However, accumulating evidence suggest that signals are perhaps first sent out by the stressed beta cells that eventually attracts the immune cells. Stressed cells adapt different stress mitigation systems as an adaptive response. However, when these adaptive responses go awry, it results in cell death. One of the stress response mechanisms, namely the integrated stress response (ISR) is activated under a variety of stressful stimuli to promote cell survival. However, when ISR is chronically activated, it can be damaging to the cells and can lead to cell death. The role of the ISR in the context of T1D is unknown. Therefore, in this DRC funded study, we propose to study the ISR in the beta cells to determine its role in propagating T1D.
Wearable Skin Fluorescence Imaging Patch for the Detection of Blood Glucose Level on an Engineered Skin Platform
A Potential Second Cure for T1D by Re-Educating the Patient’s Immune System
L Ferreira
Validating the Hypothesis to Cure T1D by Eliminating the Rejection of Cells From Another Person by Farming Beta Cells From a Patient’s Own Stem Cells
Han Zhu
Taming a Particularly Lethal Category of Cells May Reduce/Eliminate the Onset of T1D
JRDwyer 2022 Lab 1
Can the Inhibition of One Specific Body Gene Prevent Type 1 Diabetes?
Is Cholesterol Exacerbating T1D by Reducing the Functionality and Regeneration Ability of Residual Beta Cells?
Regeneration Ability of Residual Beta Cells
A Call to Question… Is T1D Caused by Dysfunctionality of Two Pancreatic Cells (β and α)?
Xin Tong
Novel therapy initiative with potential path to preventing T1D by targeting TWO components of T1D development (autoimmune response and beta-cell survival)
flavia pecanha