DRC & Research News

This page shares the latest news in T1D research and DRC’s community.

Get the most recent diabetes research news, delivered straight to your inbox

Diabetes Researching

Increasing Protective Factors to Reduce Risk of Type 1 Diabetes

Despite decades of research, scientists have yet to develop a cure for type 1 diabetes since it is a complex disease that is impacted by and interacts with many processes within the body. However, they have made significant advancements in understanding and managing the disease. Now, more focus is being put on preventing the development of type 1 diabetes.

In a recent study, researchers at the Pacific Northwest National Laboratory found that by increasing levels of growth differentiation factor 15 (GDF15) in non-obese diabetic mice, they were able to reduce the risk of developing type 1 diabetes by more than 50 percent. Although there are more than 387 pancreatic proteins in the body associated with T1D, the researchers discovered that GDF15 was significantly depleted in pancreatic beta cells of individuals with T1D.

By increasing GDF15 levels in the non-obese diabetic mice, it helped to protect islet cells from immune system attack. Researchers are seeking to determine whether this may be used to create more effective therapies for the treatment and prevention of the disease in humans. While more research is needed, it is a step in the right direction.

Diabetes Research Connection (DRC) is following these findings to see how they impact future diabetes research and treatment options. It is these types of studies that open doors for advancements in the field and an increased understanding of the disease. The DRC supports early-career scientists in pursuing novel, peer-reviewed research studies focused on the prevention, treatment, and management of T1D and eventually finding a cure. To learn more about current projects and support these efforts, visit https://diabetesresearchconnection.org.

Learn More +

OUR PROJECTS

See our approved research projects and campaigns.

Role of the integrated stress response in type 1 diabetes pathogenesis
In individuals with type 1 diabetes (T1D), the insulin-producing beta cells are spontaneously destroyed by their own immune system. The trigger that provokes the immune system to destroy the beta cells is unknown. However, accumulating evidence suggest that signals are perhaps first sent out by the stressed beta cells that eventually attracts the immune cells. Stressed cells adapt different stress mitigation systems as an adaptive response. However, when these adaptive responses go awry, it results in cell death. One of the stress response mechanisms, namely the integrated stress response (ISR) is activated under a variety of stressful stimuli to promote cell survival. However, when ISR is chronically activated, it can be damaging to the cells and can lead to cell death. The role of the ISR in the context of T1D is unknown. Therefore, in this DRC funded study, we propose to study the ISR in the beta cells to determine its role in propagating T1D.
Wearable Skin Fluorescence Imaging Patch for the Detection of Blood Glucose Level on an Engineered Skin Platform
zhang
A Potential Second Cure for T1D by Re-Educating the Patient’s Immune System
L Ferreira
Validating the Hypothesis to Cure T1D by Eliminating the Rejection of Cells From Another Person by Farming Beta Cells From a Patient’s Own Stem Cells
Han Zhu
Taming a Particularly Lethal Category of Cells May Reduce/Eliminate the Onset of T1D
JRDwyer 2022 Lab 1
Can the Inhibition of One Specific Body Gene Prevent Type 1 Diabetes?
Melanie
Is Cholesterol Exacerbating T1D by Reducing the Functionality and Regeneration Ability of Residual Beta Cells?
Regeneration Ability of Residual Beta Cells
A Call to Question… Is T1D Caused by Dysfunctionality of Two Pancreatic Cells (β and α)?
Xin Tong
Novel therapy initiative with potential path to preventing T1D by targeting TWO components of T1D development (autoimmune response and beta-cell survival)
flavia pecanha