DRC & Research News

This page shares the latest news in T1D research and DRC’s community.

Get the most recent diabetes research news, delivered straight to your inbox

Research Study for type 1 diabetes

Proactively Identifying Type 1 Diabetes

Identifying Type 1 Diabetes Development

Type 1 diabetes develops when the body mistakenly attacks and destroys insulin-producing beta cells. As the number of cells depletes, the body is unable to adequately control blood sugar levels. Researchers have been striving to find a way to prevent this destruction from occurring or to find a way to replace these cells so that the body can once again manage its own blood sugar.

A recent study took a closer look at exactly when this transformation begins to take place and beta cells begin dying off. They found that in many participants, the decline started at least six months prior to when patients would meet clinical requirements for a type 1 diabetes diagnosis. Diagnostic thresholds are currently a “fasting glucose of ≥126 mg/mL or 2-hour glucose of ≥200 mg/dL.”

The study involved 80 patients split into three categories: younger than age 11, ages 11 to 20, and older than age 20. All participants were first- or second-degree relatives of someone with type 1 diabetes and were diagnosed themselves while undergoing oral glucose tolerance tests (OGTTs) every six months. The results showed that across all age groups, C-peptide levels started declining around 12 months before diagnosis but showed the most significant changes in function in the 6 months prior to and 12 months following diagnosis.

By tracking these changes in individuals who are considered at-risk of developing type 1 diabetes, doctors may be able to catch declining beta-cell function early on and intervene with treatment before patients reach diagnostic thresholds for the disease. This could potentially be a way to prevent or slow the onset of type 1 diabetes through proactive immunotherapy.

More research is needed to further explore these findings and expand them to a larger group of participants. However, it provides researchers with insight on when type 1 diabetes may begin to develop and some changes to focus on. Diabetes Research Connection (DRC), though not involved with this study, supports early-career scientists in pursuing novel research studies around type 1 diabetes to help advance prevention and treatment efforts as well as minimizing complications, improving quality of life, and finding a cure. Learn more about current studies and how to support these projects by visiting https://diabetesresearchconnection.org.

Learn More +
Medical Technology

Helping Drive Technology Advancements

Diabetes Patients Are Helping Drive Technology Advancements

Managing type 1 diabetes is an around-the-clock job. Patients must always be aware of what their blood sugar level is, whether it is trending up or down, whether or not to administer insulin, and if they do need insulin, how much. While there have been many advancements in technology to help with monitoring and insulin administration, the development and approval process is often long and drawn out. There are a limited number of devices approved by the government for use.

Patients with type 1 diabetes have begun taking their health into their own hands and improving treatment options. There are free directions online for how patients can connect their continuous glucose monitor (CGM) and their insulin pump with their smartphone to create a closed-loop system that tracks their blood glucose and automatically administers insulin as necessary. This type of artificial pancreas is something that researchers and pharmaceutical companies have been working on for years, but to date, there is only one commercially available closed-loop system available for use in Canada.

Jonathan Garfinkel, a Ph.D. candidate in the Faculty of Arts at the University of Alberta, took his chances and used the patient-created instructions for setting up the closed-loop system two years ago, and it has been life-changing. Previously, he was having a lot of difficulty managing his blood sugar overnight, and it would drop dangerously low. With the closed-loop system, his blood sugar has become much stabler overnight, and he is not tasked with regularly doing finger pricks and figuring out insulin dosing on his own.

These advancements in technology that patients with diabetes are developing have prompted pharmaceutical companies to quicken their own pace when it comes to getting devices created and approved for commercial use. Patients are becoming increasingly more comfortable with technology and relying on smartphones, sensors, and other devices to help them stay abreast of their health.

Garfinkel himself is also working on a project to advance technology for diabetes treatment. He is in the process of developing “a more affordable glucose sensor that would sit on top of the skin, rather than being inserted subcutaneously.” It was a project he began in collaboration with Mojgan Daneshmand, an engineer and Canada Research Chair in Radio Frequency Microsystems for Communication and Sensing, who was unfortunately killed in a plane crash in January 2020. Garfinkel is continuing the work that they started together and was awarded a U of A seed grant to help.

There are so many young researchers with incredible potential who can benefit from funding that will allow them to carry out their plans and see the results. The Diabetes Research Connection provides up to $50K in funding to early-career scientists to empower them in moving forward with their novel research projects focused on type 1 diabetes. These opportunities open doors to improving the prevention, treatment, and management of type 1 diabetes, as well as improving quality of life, minimizing complications, and one day finding a cure. Learn more by visiting https://diabetesresearchconnection.org.

Learn More +
Diabetes Projector

Advancements in Type 1 Diabetes Management Technology

One of the challenges – and frustrations – of living with type 1 diabetes (T1D) is multiple finger sticks each day to test blood sugar levels. Individuals want to ensure that they are staying on top of blood sugar in order to administer insulin or glucose as needed. Even continuous glucose monitors require a tiny needle stick in order to monitor blood sugar levels.

In a recent study, researchers share advancements using laser technology, rather than blood samples, in order to measure glucose concentration. The device they developed uses Raman spectroscopy, which shines near-infrared light on the skin to determine its chemical composition. This includes reading the signal given off by glucose located in the interstitial fluid that surrounds skin cells.

The near-infrared light only has the ability to penetrate a few millimeters into the skin, so researchers needed to find a reliable way to measure glucose from this reading. Initially, they were comparing the chemical composition of the tissue with blood samples taken simultaneously to determine glucose levels. However, there was too much unpredictability since movement of the patient or changes in the environment could alter results. In addition, it required a great deal of calibration.

The Laser Biomedical Research Center at MIT has spent more than 20 years working on developing a glucose sensor using Raman spectroscopy, and they have made a lot of advancements over the years. The latest device has evolved from indirect measurement of glucose concentrations, like those mentioned above, to direct measurement. Researchers found that by using a small fiber to collect the Raman signal after shining the near-infrared light at a 60-degree angle, they could filter out unwanted signals from other solid components in the skin. Testing the device on pigs, they were able to get an accurate glucose reading for up to an hour, and it only required about 15 minutes of calibration.

One drawback to the current technology is that the device is approximately the size of a desktop printer, meaning it is not easily portable. With a slightly smaller system, individuals could have a testing device at home or at work where they could place their finger on a sensor and Raman spectroscopy would be used to check blood sugar. Eventually, researchers would like to create a wearable monitor that would act as a continuous glucose monitor but without any needles.

After more than two decades, researchers are finally getting closer to their goal of creating a laser-based glucose sensor that can be used for everyday monitoring. It is encouraging to see advancements that seek to take some of the pain and inconvenience out of blood sugar monitoring by eliminating the need for so many needles.

Diabetes Research Connection (DRC) is excited to see how this technology continues to advance and what it may mean for the future of continuous glucose monitoring and diabetes management. Researchers around the world are focused on improving the prevention, treatment, and management of type 1 diabetes. The DRC supports these efforts by providing up to $75K in funding to early-career scientists pursuing novel research for T1D. Learn more by visiting https://diabetesresearchconnection.org.

Learn More +
CGM

Could Real-Time Continuous Glucose Monitoring Reduce Incidences of Hypoglycemia?

Managing type 1 diabetes can be tricky. Many people rely on self-monitoring throughout the day by periodically testing their blood sugar and administering the proper dose of insulin as needed. Individuals with T1D often inject themselves with insulin multiple times per day. However, food, beverages, physical activity, illness, and other factors can all impact blood sugar levels making them more difficult to effectively manage.

But with advances in technology, continuous glucose monitoring (CGM) devices are now available to help those with T1D track and manage their blood sugar. These devices have a tiny sensor that is inserted under the skin which automatically measures blood glucose levels and transmits the information to a monitoring device. The system can also alert when blood sugar becomes too high or falls below a specified level allowing individuals to respond accordingly.

A recent study conducted across 12 diabetes centers in Germany aimed to determine whether the use of real-time CGM (rtCGM) systems could reduce the number and severity of incidences of hypoglycemia in patients with T1D who had a history of impaired hypoglycemia awareness or severe hypoglycemia within the previous 12 months. The study involved 149 participants, and 141 successfully completed the trial in its entirety.

All participants wore a masked rtCGM system for 28 days before being randomly assigned to one of two groups: the first group wore an unmasked rtCGM system for the next 26 weeks, and the second group was a control group that self-monitored blood glucose levels during this time. The results of the study found that the group that wore the rtCGM system had a 72% decrease in the number of hypoglycemic events (10.8 to 3.5 per 28 days), while the control group saw no significant reduction (14.4 to 13.7 per 28 days). Therefore, the rtCGM system was able to reduce the number of hypoglycemic events that occurred in individuals with a history of severe hypoglycemia or impaired hypoglycemia awareness.

The Diabetes Research Connection (DRC) is encouraged to see the difference these types of devices can make in the lives of individuals living with type 1 diabetes. It is through innovative research studies and technology development that these advances are possible. The DRC supports early career scientists in pursuing novel research geared toward diagnosing, treating, or curing T1D, as well as improving quality of life for those living with the disease. Learn more about the incredible projects that are taking place and find out how you can be a part of supporting these initiatives by visiting http://diabetesresearchconnection.org.

Learn More +
Implantable Glucose Sensor

Could Implantable Glucose Sensors be a Viable Option for Monitoring Blood Sugar?

Diabetes management has come a long way over the years. Some people have transitioned away from constant finger pricks and begun using continuous glucose monitoring (CGM) systems to track their blood sugar and alert them to episodes of hyperglycemia or hypoglycemia. However, not everyone has the same level of adherence to using this technology, so results can be inconsistent.

Researchers from Diablo Clinical Research recently conducted a study on the use of implantable, subcutaneous continuous glucose sensors for diabetes management. A small sensor was placed under the skin, and then a transmitter was positioned over top providing wireless power and transmission of data to a mobile app. The transmitter also vibrated to alert users of episodes of hyper- or hypoglycemia in addition to alerts being sent to the app.

There were 90 adults with type 1 and type 2 diabetes who participated in the nonrandomized, prospective, masked, single-arm study which lasted for 90 days. Sixty-one of the participants had type 1 diabetes. Individuals underwent accuracy assessment visits on days 1, 30, 60, and 90 to compare results of the implantable sensor versus a bedside glucose analyzer. In addition, some participants also partook in hyperglycemia and hypoglycemia challenges on days 30, 60, and 90. There were only eight participants who did not complete the study, and 12 reports of mild adverse events and two moderate adverse events.

Following the study, the results showed “more than 90% of continuous glucose monitoring system readings within 20% of reference values.” Furthermore, “the system correctly identified 93% of hypoglycemic events and 96% of hyperglycemic events by the reference glucose reader.” The implantable CGM system used was Eversense by Senseonics.

Additional clinical studies are necessary to further evaluate the safety and accuracy of the system and expand potential use to pediatric patients as well. However, preliminary results show high levels of safety and accuracy in this small study.

This is an exciting step toward providing individuals with T1D another option for managing diabetes allowing them to measure blood sugar levels more consistently and with less intervention. The Diabetes Research Connection (DRC) is interested to see how this study advances moving forward and what it may mean for diabetes management in the future. The DRC raises funds for early career scientists to perform peer-reviewed, novel research designed to prevent and cure type 1 diabetes, minimize its complications, and improve quality of life for those living with the disease. Click to learn more about current projects and provide support.

Learn More +

OUR PROJECTS

See our approved research projects and campaigns.

Role of the integrated stress response in type 1 diabetes pathogenesis
In individuals with type 1 diabetes (T1D), the insulin-producing beta cells are spontaneously destroyed by their own immune system. The trigger that provokes the immune system to destroy the beta cells is unknown. However, accumulating evidence suggest that signals are perhaps first sent out by the stressed beta cells that eventually attracts the immune cells. Stressed cells adapt different stress mitigation systems as an adaptive response. However, when these adaptive responses go awry, it results in cell death. One of the stress response mechanisms, namely the integrated stress response (ISR) is activated under a variety of stressful stimuli to promote cell survival. However, when ISR is chronically activated, it can be damaging to the cells and can lead to cell death. The role of the ISR in the context of T1D is unknown. Therefore, in this DRC funded study, we propose to study the ISR in the beta cells to determine its role in propagating T1D.
Wearable Skin Fluorescence Imaging Patch for the Detection of Blood Glucose Level on an Engineered Skin Platform
zhang
A Potential Second Cure for T1D by Re-Educating the Patient’s Immune System
L Ferreira
Validating the Hypothesis to Cure T1D by Eliminating the Rejection of Cells From Another Person by Farming Beta Cells From a Patient’s Own Stem Cells
Han Zhu
Taming a Particularly Lethal Category of Cells May Reduce/Eliminate the Onset of T1D
JRDwyer 2022 Lab 1
Can the Inhibition of One Specific Body Gene Prevent Type 1 Diabetes?
Melanie
Is Cholesterol Exacerbating T1D by Reducing the Functionality and Regeneration Ability of Residual Beta Cells?
Regeneration Ability of Residual Beta Cells
A Call to Question… Is T1D Caused by Dysfunctionality of Two Pancreatic Cells (β and α)?
Xin Tong
Novel therapy initiative with potential path to preventing T1D by targeting TWO components of T1D development (autoimmune response and beta-cell survival)
flavia pecanha