DRC & Research News

This page shares the latest news in T1D research and DRC’s community.

Get the most recent diabetes research news, delivered straight to your inbox

Asthma Inhaler

Examining the Co-Occurrence of Asthma and Type 1 Diabetes

It is not uncommon for individuals to have more than one disease or condition at a time. Oftentimes, there is an underlying link between their development, even if it is not entirely understood. In addition, many conditions run in families, which can be due to genetics or even possibly environmental factors.

A recent study looked at data from more than 1.2 million children in Sweden to see if there was a potential association between asthma and type 1 diabetes. They examined risk both within individuals and within families, comparing information from full siblings, half-siblings (both maternal and paternal), full cousins, and half cousins as well.

According to their results, individuals with asthma were at increased risk of developing type 1 diabetes (T1D), but the presence of T1D did not increase their risk of later developing asthma. In addition, if an individual had either T1D or asthma, their full siblings were at increased risk of developing either disease. Full cousins were also at a greater risk.

Data was obtained from several Swedish registers held by the National Board of Health & Welfare and Statistics Sweden and encompassed 1,284,748 singleton children born in Sweden between January 1, 2001, and December 31, 2013. Of these children, 121,809 had asthma, 3,812 had T1D, and 494 had both diseases. Their findings suggest that there may be shared familiar factors that affect associations ranging from genetics to environment.

Understanding these potential associations may help healthcare providers with recognizing symptoms of either disease earlier on if one has already been diagnosed. It may also influence management or treatment of these diseases. More research is necessary to further explore possible connections between asthma and T1D and what that might mean for future care.

Though not involved in this study, the Diabetes Research Connection (DRC) is continually striving to advance research related to T1D by providing critical funding to early-career scientists for their studies. This can lead to improved diagnosis, treatment, and prevention methods, as well as one day finding a cure. To learn more about current research projects and how to help, visit https://diabetesresearchconnection.org.

Learn More +
Diabetes Research

Exploring the Impact of Environment on Type 1 Diabetes Risk

While researchers know that type 1 diabetes is caused by the destruction of insulin-producing beta cells, what they are still uncertain about are the exact causes of this process. They know that genetics play a role, yet there is not a single gene responsible for the disease; there are several genes that are believed to contribute. Furthermore, they are not convinced that the disease is entirely genetic, and have reason to believe that environmental factors are to blame as well. But once again, there is not a single environmental risk that has a significantly greater impact than others.

A recent study examined several environmental risk factors such as “air pollution, diet, childhood obesity, the duration of breastfeeding, the introduction of cow’s milk, infections, and many others” and yet researchers still do not have any definitive answers. What they do know is that the incidence of type 1 diabetes has increased over the past 30 years by 3 percent year over year, and this change is too significant to be caused by genetics alone.

Using a variety of modeling, they evaluated the impact of specific environmental factors over time. But the simulated data did not pinpoint one factor that stood out above the others and had a stronger impact on diabetes risk. It is likely that a combination of environmental factors is at play in conjunction with genetic risk. More research is needed to further investigate potential risks and protective factors when it comes to type 1 diabetes.

These findings may inspire other researchers to dig more deeply into environmental factors and their impact on disease development and progression. Diabetes Research Connection (DRC), though not involved with this study, provides critical funding for early-career scientists to pursue novel research studies related to type 1 diabetes to enhance understanding as well as prevention, treatment, and management of the disease. The goal is ultimately to find a cure. Learn more about current projects and how to help by visiting https://diabetesresearchconnection.org.

Learn More +
Diabetes Researching

Genetic Testing May Improve Prediction of Type 1 Diabetes Risk

The cause of type 1 diabetes is complex. There is not a single gene responsible for the disease, and both genetics and environment play a role. Plus, there is currently no way of preventing the disease from occurring. However, scientists believe that they can better predict which children and teenagers are at higher risk so their health can be monitored more closely and treatment started before they develop potentially life-threatening diabetic ketoacidosis.

A recent study found that a simple genetic test that compares an individual’s gene profile to 82 genetic sites that are known to be associated with type 1 diabetes can identify those who are most at risk. The test only costs $7 and uses a saliva sample, so no blood draws or painful testing are required. If an individual is flagged as high risk, they can then have autoantibody screening conducted to look for the presence of four islet autoantibody biomarkers of the disease. The presence of two or more autoantibodies further identifies an individual at increased risk. Autoantibody tests are slightly more expensive at $75 each.

While family history does increase risk of type 1 diabetes, it is not a guaranteed indicator, and more than 90% of people who develop the disease do not have a family history. This genetic test could help to differentiate between those at high risk and those at low risk so there are fewer unnecessary tests that occur, and individuals who could benefit from closer monitoring can be more accurately identified.

According to the study, “The general population risk of type 1 diabetes is about 4 out of 1000, and those with a positive genetic test now have a risk of about 4 out of 100.” Testing may allow doctors to provide more targeted care and treatment for the disease and support individuals in better managing their health. As research continues to advance, scientists learn more about the risk factors, biomarkers, genetic sites, and environmental factors that all contribute to the development of type 1 diabetes. In turn, this can enhance prediction, prevention, and treatment of the disease.

Diabetes Research Connection (DRC) supports early-career scientists in growing the body of knowledge that exists regarding type 1 diabetes by providing critical funding for research projects. Studies are focused on preventing and curing the disease as well as minimizing complications and improving quality of life. Click to learn more about current projects and provide support.

Learn More +
Diabetes Costs

Type 1 Diabetes Poses Significant Financial Burden

Managing type 1 diabetes (T1D) is not only time consuming, it is also expensive. Costs include not only the basics to manage the disease such as testing supplies, insulin, continuous glucose monitors, and insulin pumps, but also those related to hospital care for complications or outpatient care. In addition, there are lost wages due to disease-related situations, as well as indirect costs. These expenses can quickly add up.

A recent study looked at the estimated lifetime economic burden for individuals with T1D versus those without. The results showed that the difference between the two groups over the course of 100 years (a lifetime), was $813 billion. The model projected costs for 1,630,317 individuals with T1D and the same number without. It followed simulated patients year by year from the time they were diagnosed until they passed away.

According to the study, “Diabetes contributes $237 billion in direct medical costs per year or 7% of the nation’s $3.3 trillion spent on health care, which is higher than the annual health care expenditures for other chronic diseases, such as cancer (5%) and heart disease/stroke (4%).”

Not only did individuals without T1D experience lower costs, they also had higher life expectancy rates. Patients with T1D are at increased risk for disease-related complications which can further impact life expectancy and financial burden. Currently, T1D is a progressive disease, and it is something that affects individuals for the rest of their lives because there is no known cure. It must be managed 24 hours a day, 7 days a week, 365 days a year.

The extreme difference in lifetime societal burden and economic burden between these two groups demonstrates the need for continued research related to T1D. The ability to prevent or delay disease development or progression, or to cure the disease, could have major financial cost savings. The results of this study were estimated given available data and modeling capabilities, so they may underestimate the true impact.

There were also certain limitations to the study, including data that was only recent up to 2016 and did not include costs associated with CGMs, insulin pumps, or hybrid artificial pancreas systems. Complication-related costs were derived from data on patients with type 2 diabetes because it was not available for patients with type 1 diabetes. However, the general message does not change: finding a way to delay, prevent, or eliminate disease progression is essential, in addition to minimizing complications.

Diabetes Research Connection (DRC) is committed to advancing research around type 1 diabetes by providing critical funding to early-career scientists. Through their novel, peer-reviewed studies, they can improve understanding of the disease as well as treatment options. To learn more about current projects and support these efforts, visit https://diabetesresearchconnection.org.

Learn More +
Environmental Factors T1D

Studying Environmental Factors Related to Type 1 Diabetes

While genetics do play a role in the development of type 1 diabetes (T1D), researchers also believe that environment contributes as well. There is no singular cause of T1D, and all of its risk and protective factors are yet unknown. However, one study is striving to build a comprehensive understanding of diverse environmental factors and the role they may play in children developing T1D.

Researchers launched The Environmental Determinants of Islet Autoimmunity (ENDIA) several years ago and recently received an additional $8.25M in funding to keep it going for another three years. Over the past seven years, they have enrolled 1,500 participants, which includes babies ranging from pregnancy up to six months in age who have at least one immediate relative with T1D. The babies are seen every three to six months until they reach at least age three.

The study looks at a wide range of environmental factors in an effort to gain a better understanding of what increases or decreases risk of developing type 1 diabetes. Factors include “growth during pregnancy and early life, the method of delivery (natural birth versus caesarean section), the mother’s nutrition during pregnancy, infant feeding (breastfeeding and/or formula), the duration of breastfeeding and the child’s nutrition, the child’s immune system and when the child received vaccines and exposure to viruses during pregnancy and early life.”

Not only did it take a long time to recruit participants, it will take several years to gather and analyze the long-term data in order to identify potential risk or protective factors and how each child was affected. With millions of people living with T1D, this study may help to improve treatment and prevention in the future, possibly leading to a vaccine one day.

Diabetes Research Connection (DRC) will continue to follow this study and see how results progress and what discoveries are made. In the meantime, the organization provides critical funding for early career scientists pursuing research on various facets of T1D. Studies are focused on preventing or curing diabetes, as well as reducing complications and improving quality of life for individuals living with the disease. Visit https://diabetesresearchconnection.org to learn more about current projects and support these efforts.

Learn More +
Diabetes Treatment

Could Peripheral T Helper Cells Be Linked to Type 1 Diabetes Risk?

Type 1 diabetes (T1D) is a complex disease. Researchers believe that both genetics and autoantibodies play a role in development of the disease. In individuals with T1D, the immune system mistakenly attacks and destroys insulin-producing beta cells in the pancreas. A new study has found that peripheral T helper cells may play a role in initiating this process.

The study showed that children with T1D, as well as those who were autoantibody-positive who developed the disease later on, both had an increase in the amount of peripheral T helper cells circulating in their blood. Researchers believe that much like follicular helper T cells, peripheral T helper cells may also be involved in activating B cells which target against proteins in pancreatic islet cells and contribute to the development of T1D.

The ability to identify children who are at increased risk for the disease due to genetics as well as the elevated presence of peripheral T helper cells may improve options for proactively monitoring and treating T1D. It could also support the development of new immunotherapies for the disease.

More research is necessary to better understand the role of this T-cell subset and how it impacts type 1 diabetes risk and development of the disease as well as how it could improve treatment or prevention options. Though not involved with this study, Diabetes Research Connection (DRC) follows the latest developments and advancements regarding type 1 diabetes understanding, treatment, and prevention.

DRC provides critical funding for early career scientists pursuing novel research studies related to the disease and hopes to one day find a cure. To learn more about current projects or how to help, visit http://diabetesresearchconnection.org.

Learn More +
Diabetes Jigsaw Puzzle

Exploring the Potential Impact of Genetics and Infection on T1D Risk

There is no clear, concise explanation for why some people develop type 1 diabetes (T1D) and others do not, or what puts some people at greater risk for the disease. The origins and triggering factors for T1D are something that scientists have been studying for decades. A recent study looks at the possible relationship between genetic risk variants and viral infections and their impact on T1D development.

In some individuals, enteroviruses may trigger or accelerate disease development. However, in others, these same viruses may stimulate a variety of protective factors. Both genetic and environmental factors come into play, and researchers are exploring how to use these findings to improve treatment and prevention of T1D.

Scientists know that the destruction of insulin-producing beta cells plays a role in disease development. Some individuals present with autoantibodies long before T1D develops, and there are still beta cells present in many people even after living with the disease for many years. Yet they are still unsure about exactly what triggers beta cell destruction.

Studies have shown that around 50 percent of T1D risk is heritable. But just because a person carries this risk, does not necessarily mean they will develop the disease. There are around 60 different loci for single-nucleotide polymorphisms (SNP) that are associated with T1D and may contribute to risk.

Researchers believe that enteroviruses may also play a role. Many links have been found between enterovirus infections and the presence of various autoantibodies.  These infections may trigger beta cell autoimmunity in individuals who already have factors that put them at greater risk of developing T1D. By more effectively identifying individuals who have multiple risk factors, scientists may be able to create targeted antiviral treatments or preventive virus vaccines.

There is still a great deal of research to be done regarding the development of and triggers for T1D. Genetics, environment, and infection may all play a role, but their impact differs from person to person. There is also limited insight into factors such as ethnicity and gender, especially when looking at enteroviral etiology.

Though not involved with this study, the Diabetes Research Connection (DRC) contributes to current bodies of research through providing critical funding for early career scientists pursuing projects related to the diagnosis, prevention, treatment, and eventual cure for T1D. Scientists are learning more about the disease every day. Support these efforts by visiting http://diabetesresearchconnection.org.

Learn More +
Genes Kidneys

Scientists Delve More Deeply into Genetics and T1D

Type 1 diabetes is a complex disease. Scientists know that it is not caused by a single gene – there are multiple genes involved, and the differences may vary from person to person. In fact, a recent study by a TEDDY (The Environmental Determinants of Diabetes in the Young) team has identified six gene regions that may play a role in the development of type 1 diabetes (T1D).

Researchers have already found that there are two key antibodies that are present in individuals with the disease, but one typically appears before the other, and just because a person has one or both of these antibodies does not necessarily mean they will develop diabetes. These two antibodies – one that affects insulin and one that affects the enzyme that regulates insulin-producing beta cells – account for two major subtypes of the disease, and there may be more yet to be discovered.

This recent TEDDY study focused on identifying non-HLA genes because these genes are not directly linked to the immune system. Because the immune system attacks insulin-producing beta cells, HLA genes are already a prime focus, so the researchers wanted to look at a different area. The more genes that can be identified as potentially playing a role in type 1 diabetes risk, the more effective and accurate screening measures can be.

The TEDDY initiative looks at both genetic and environmental factors in diabetes to determine how they may impact one another. The international initiative is following nearly 9,000 children for 15 years. This particular study involved 5,806 Caucasian TEDDY participants due to genetic differences between ethnic groups.

In addition to examining non-HLA genes, the researchers also looked at 176,586 single nucleotide polymorphisms (SNPs), or single variations in the building blocks of an individual’s DNA. They sought to determine whether type 1 diabetes is associated with certain SNPs. They broke this down even further to look at differences in SNPs in individuals who have T1D, and those who have islet cell autoantibodies (IA). While IA is considered a risk factor, it does not always develop into full-blown T1D.

This is the first time that this type of longitudinal study has been used in conjunction with gene identification and the development of diabetes. Scientists are hopeful that by better understanding the genetic changes that occur with T1D, they can improve detection of risk factors and potentially develop new strategies for preventing or treating the disease. According to the National Institutes of Health, 1 in 300 people in the United States are affected by type 1 diabetes by age 18.

Supporting novel research that aims to prevent and cure type 1 diabetes, or improve quality of life and reduce complications for individuals living with the disease, is the aim of the Diabetes Research Connection (DRC). Though not associated with this particular project, the DRC provides funding for early career scientists to move forward with research studies on T1D and improve understanding of the disease. To learn more, visit http://diabetesresearchconnection.org.

Learn More +
Genes associated with T1D

Genes That Increase the Risk of Type 1 Diabetes Have Lost Their Hiding Place

Newswise — TheGenes That Increase the Risk of Type 1 Diabetes genes that increase the risk of type 1 diabetes have lost their hiding place. A research group that includes a University of Florida genetics expert has located and narrowed down the number of genes that play a role in the disease, according to a study published Monday in the journal Nature Genetics. Knowing the identities and location of causative genes is a crucial development: Other researchers can use this information to better predict who might develop type 1 diabetes and how to prevent it.

“It’s a game-changer for type 1 diabetes,” said Patrick Concannon, director of the University of Florida Genetics Institute.

Researchers gathered information about the genetic makeup of 27,000 people, including those who had type 1 diabetes and others who did not. They then began looking for individual differences in DNA that raise the risk of type 1 diabetes. Starting with 200,000 possible locations in the genome, researchers used a technique known as fine mapping to pinpoint DNA sequence variations that can lead to diabetes. In some genomic regions, they narrowed the number of disease-causing DNA variations — known as single nucleotide polymorphisms or SNPs — from the thousands down to five or less.

That will make diabetes researchers’ work more effective and efficient by giving them the most detailed directions yet about where to look for the genetic variations that cause type 1 diabetes and perhaps other autoimmune diseases such as arthritis, Concannon said. Now that the group of geneticists has identified the important genes and SNPs, diabetes researchers will reap the benefits, according to Concannon.

“We’ve taken this genetic data which was interesting but hard to work with, and we’ve condensed it down into something that people can actually use to begin to explore the mechanism of the disease. It moves it out of the realm of genetics to being broadly applicable to type 1 diabetes research,” he said.

Type 1 diabetes occurs when the body’s immune system kills off insulin-producing cells in the pancreas. Some 3 million people in the United States have the disease, according to the JDRF, a group that funds type 1 diabetes research and education. Experts don’t know exactly what causes the disease but suspect that genetics and environmental factors may play a role.

The researchers’ findings are the most comprehensive yet in the effort to locate and identify the genetic risk variants for type 1 diabetes and other autoimmune diseases, said Todd Brusko, a member of the UF Diabetes Institute and an assistant professor in the UF College of Medicine’s department of pathology, immunology and laboratory medicine, part of UF Health.

Researchers can now shift away from trying to determine which genes heighten the risk for diseases like type 1 diabetes, Brusko said. Instead, researchers can focus on how genetic changes alter immune cell activity. That, he said, could eventually lead to new treatments that prevent or stop type 1 diabetes and other automimmune diseases.

“Ultimately, this information will allow researchers and clinicians to tailor treatments…”

“Ultimately, this information will allow researchers and clinicians to tailor treatments to correct underlying defects in the immune system that allow for autoimmune disease development,” Brusko said.

The findings are significant because certain interactions within the genome can now be analyzed to identify which genes and regulatory sequences cause the disease, said Stephen S. Rich, the study’s lead author and the director of the Center for Public Health Genomics at the University of Virginia. Defining the variants that cause type 1 diabetes may lead to new therapeutic targets and treatments, he said.

The study also included work by researchers from the Massachusetts Institute of Technology, the Eli and Edythe L. Broad Institute of MIT and Harvard, and the University of Cambridge in England. The current study was part of the type 1 diabetes Genetics Consortium, which was established in 2001 to enhance scientists’ ability to detect genes and variants that are relevant to the disease. The Genetics Consortium has received about $50 million in funding from the JDRF and the National Institute of Diabetes and Digestive and Kidney Diseases, Rich said.

http://www.newswise.com/articles/genes-that-increase-the-risk-of-type-1-…

 

Learn More +

OUR PROJECTS

See our approved research projects and campaigns.

Role of the integrated stress response in type 1 diabetes pathogenesis
In individuals with type 1 diabetes (T1D), the insulin-producing beta cells are spontaneously destroyed by their own immune system. The trigger that provokes the immune system to destroy the beta cells is unknown. However, accumulating evidence suggest that signals are perhaps first sent out by the stressed beta cells that eventually attracts the immune cells. Stressed cells adapt different stress mitigation systems as an adaptive response. However, when these adaptive responses go awry, it results in cell death. One of the stress response mechanisms, namely the integrated stress response (ISR) is activated under a variety of stressful stimuli to promote cell survival. However, when ISR is chronically activated, it can be damaging to the cells and can lead to cell death. The role of the ISR in the context of T1D is unknown. Therefore, in this DRC funded study, we propose to study the ISR in the beta cells to determine its role in propagating T1D.
Wearable Skin Fluorescence Imaging Patch for the Detection of Blood Glucose Level on an Engineered Skin Platform
zhang
A Potential Second Cure for T1D by Re-Educating the Patient’s Immune System
L Ferreira
Validating the Hypothesis to Cure T1D by Eliminating the Rejection of Cells From Another Person by Farming Beta Cells From a Patient’s Own Stem Cells
Han Zhu
Taming a Particularly Lethal Category of Cells May Reduce/Eliminate the Onset of T1D
JRDwyer 2022 Lab 1
Can the Inhibition of One Specific Body Gene Prevent Type 1 Diabetes?
Melanie
Is Cholesterol Exacerbating T1D by Reducing the Functionality and Regeneration Ability of Residual Beta Cells?
Regeneration Ability of Residual Beta Cells
A Call to Question… Is T1D Caused by Dysfunctionality of Two Pancreatic Cells (β and α)?
Xin Tong
Novel therapy initiative with potential path to preventing T1D by targeting TWO components of T1D development (autoimmune response and beta-cell survival)
flavia pecanha