DRC & Research News

This page shares the latest news in T1D research and DRC’s community.

Get the most recent diabetes research news, delivered straight to your inbox

diabetic Retinopathy

Asthma Medication May Help Treat Diabetic Retinopathy

A common complication associated with diabetes (T1D) is diabetic retinopathy. Poor blood sugar control can increase risk of this disease because it impacts the blood flow to the eye by blocking and damaging tiny blood vessels. It can eventually lead to blindness. Symptoms can be very mild and barely noticeable at first, so this is often a condition that is treated in later stages when the effects become more severe.

However, a recent study found that the administration of an FDA-approved asthma medication – montelukast, also known as Singulair – may help reduce damage to blood vessels and nerves in and around the eye. This indication has only been tested in mouse models so far, but because it is already an FDA-approved medication for use in children and adolescents, this may decrease the time it takes to shift into human clinical trials.

Researchers found that the medication suppresses inflammation enough to alter the signaling of inflammatory molecules and prevent pathology, but not enough to compromise the body’s innate immunity. If found effective in human trials, it could be used as a prevention method as well as to treat diabetic retinopathy in its early stages. This could be beneficial to children who are newly diagnosed with type 1 diabetes and even those who have been managing the disease for several years and are at risk for eye disease.

Though not involved with this study, the Diabetes Research Connection (DRC) is interested to see how it progresses and what findings show when used in human subjects. It is encouraging to see a potential new option for reducing risk of diabetic retinopathy and improving quality of life for individuals living with type 1 diabetes.

DRC supports early career scientists in pursuing novel, peer-reviewed research studies aimed at prevention, treatment, and an eventual cure for type 1 diabetes. To learn more about current projects and how to help, visit http://diabetesresearchconnection.org.

Learn More +

OUR PROJECTS

See our approved research projects and campaigns.

Role of the integrated stress response in type 1 diabetes pathogenesis
In individuals with type 1 diabetes (T1D), the insulin-producing beta cells are spontaneously destroyed by their own immune system. The trigger that provokes the immune system to destroy the beta cells is unknown. However, accumulating evidence suggest that signals are perhaps first sent out by the stressed beta cells that eventually attracts the immune cells. Stressed cells adapt different stress mitigation systems as an adaptive response. However, when these adaptive responses go awry, it results in cell death. One of the stress response mechanisms, namely the integrated stress response (ISR) is activated under a variety of stressful stimuli to promote cell survival. However, when ISR is chronically activated, it can be damaging to the cells and can lead to cell death. The role of the ISR in the context of T1D is unknown. Therefore, in this DRC funded study, we propose to study the ISR in the beta cells to determine its role in propagating T1D.
Wearable Skin Fluorescence Imaging Patch for the Detection of Blood Glucose Level on an Engineered Skin Platform
zhang
A Potential Second Cure for T1D by Re-Educating the Patient’s Immune System
L Ferreira
Validating the Hypothesis to Cure T1D by Eliminating the Rejection of Cells From Another Person by Farming Beta Cells From a Patient’s Own Stem Cells
Han Zhu
Taming a Particularly Lethal Category of Cells May Reduce/Eliminate the Onset of T1D
JRDwyer 2022 Lab 1
Can the Inhibition of One Specific Body Gene Prevent Type 1 Diabetes?
Melanie
Is Cholesterol Exacerbating T1D by Reducing the Functionality and Regeneration Ability of Residual Beta Cells?
Regeneration Ability of Residual Beta Cells
A Call to Question… Is T1D Caused by Dysfunctionality of Two Pancreatic Cells (β and α)?
Xin Tong
Novel therapy initiative with potential path to preventing T1D by targeting TWO components of T1D development (autoimmune response and beta-cell survival)
flavia pecanha