Diabetes Research News

Get the most recent diabetes research news, delivered straight to your inbox

Brain Differences May Impact Ability to Recognize Low Blood Sugar

Healthy adults can typically recognize when their blood sugar may be becoming too low. It triggers physical symptoms such as dizziness, sweating, weakness, and rapid heartbeat, just to name a few. Plus, their body responds by producing glucose and initiating the brain to signal for food. However, in individuals with type 1 diabetes, the brain does not always respond in this way.

A recent study found that the areas of the brain activated by low blood sugar in adults without diabetes are not the same as those in adults with type 1 diabetes. In brain scans of non-diabetic adults, areas associated with reward, motivation, and decision making showed changes during brain scans. However, only half of the individuals with T1D experienced similar changes, and only in one area of the brain – the area associated with attention – and the other half experienced no changes. Their brain showed no noticeable response to having low blood sugar, which is why individuals may miss cues that others would typically pick up on.

According to Janice Hwang, M.D., assistant professor of medicine and first author on the study, “There is a progressive loss of coordinated brain response to low blood sugar as you go from healthy adult to aware to unaware. The first areas of the brain to go are associated with feeding behavior.” The researchers are hoping that these findings will lead to more effective ways of restoring low blood sugar awareness in individuals with T1D who have lost this awareness.

It is these types of discoveries that help to improve understanding of how T1D affects the brain and body and allows researchers to develop more effective ways of treating and managing the condition. The Diabetes Research Connection supports early career scientists striving to advance research regarding the treatment, prevention, diagnosis, and management of T1D. Researchers can receive up to $50,000 in funding to apply toward their project. To learn more or support these efforts, visit http://diabetesresearchconnection.org.

Learn More +

DRC-Funded Scientist Creates New Insulin-Producing Cells to Fight Type 1 Diabetes

Thanks in part to funding from the Diabetes Research Connection (DRC), Dr. Kristin Mussar was able to conduct an in-depth study regarding how to stimulate the body’s own cells to create new insulin-producing cells that may help treat type 1 diabetes (T1D). In individuals with T1D, the immune system attacks insulin-producing cells, destroying them and leaving the body unable to effectively regulate blood sugar.

The human body is filled with myeloid cells that all differentiate to help grow, maintain, and repair various organs. When these cells are depleted, it impacts organ health. For instance, lack of insulin-producing cells results in diabetes. However, Dr. Mussar and her team discovered that there is a population of macrophages – white blood cells that recirculate throughout the body constantly monitoring the health status of all tissues – that instruct insulin-producing cells to grow in the perinatal stage of pancreas development. During this period of prolific growth, enough insulin-producing cells are created to support glucose homeostasis throughout one’s life.

Dr. Mussar found that there is a special population of these cells that act as cargos of potent growth factors for the insulin-producing cells in the pancreas. If these cells are prevented from entering the pancreas, the growth of insulin-producing cells is arrested and diabetes ensues. This lack of cell growth, as well as cell destruction, are issues that researchers have been trying to remedy through various strategies for treating T1D.

One avenue of treatment that is being explored is finding ways to use the body’s own cells and processes to support insulin production. Current challenges in treatment include the constant monitoring and accurate dosing of insulin, as well as the use of immunosuppressants or other medications to prevent the body from destroying modified cells or specialized therapies. Using the body’s own cells can help reduce risk of immune attack or rejection.

To this effect, Dr. Mussar’s research revealed that there are precursors to these special macrophages that exist within the bone marrow of adults. When these precursors are injected into the blood stream, they are able to signal growth of insulin-producing cells. This discovery raises hopes that, by dispatching these pro-regenerative cells from the bone marrow to injured pancreatic islets, it may be possible to enhance regeneration of insulin-producing cells in individuals with type 1 diabetes. This may in turn help to stabilize blood sugar naturally using the body’s own cells.

The Diabetes Research Connection is proud to have played a role in making Dr. Mussar’s research possible by providing funding that enabled her to continue moving forward with her project and eventually get the results published in the Journal of Clinical Investigation.

Learn More +

Could Reprogramming Cells Help Treat Type 1 Diabetes?

More than 300 million people around the world are living with diabetes. Currently, there is no cure, but scientists are continually researching and testing different methods for treating and managing this disease. One of the major obstacles faced in treating type 1 diabetes is that the body’s immune system attacks and destroys insulin-producing beta cells, whether these cells are naturally occurring or introduced through medical treatment.

Some researchers are looking at ways to reprogram the body’s own cells to function as insulin-producing cells to help better control blood sugar. The human pancreas contains small niches where hormone-making cells reside. Within these niches, two different cells predominate: alpha cells, which make glucagon, and beta cells, which make insulin. In individuals with type 1 diabetes, insulin-producing cells are destroyed, but glucagon cells are not.

Scientists developed a method using viruses as carriers to deliver two genes that are present in insulin but glucagon cells to the glucagon cells allowing the cells to be able to produce insulin. Glucagon cells are a good option for this process because they are similar to insulin cells and appear in abundance in islets within the pancreas already. A decrease in these cells as they were reprogrammed did not appear to affect glucose metabolism.

These experiments have been performed in NOD mice, which are mice that develop diabetes very close to human diabetes. Following the experiment, the diabetes disease appeared to have resolved in the diabetic NOD mice thanks to the new source of cells making insulin in their pancreas. However, human application of this technique will take time since targeting specific cells is complicated, and the use of viral elements creates side effects that need to be resolved.

It is this type of research and these experiments that lead to breakthroughs in the treatment, management, prevention, and improvement in the quality of life for individuals living with type 1 diabetes. Though not involved in this particular study, the Diabetes Research Connection supports early-career scientists through funding for novel research on type 1 diabetes. Learn more about current projects and support their advancement by visiting http://diabetesresearchconnection.org.

Learn More +

Diabetes Research Connection 2016 Year in Review

This past year has been a big one for us at Diabetes Research Connection. Our donors have stepped up to the plate and helped us fund research towards treating, curing and preventing type 1 diabetes. In fact, in 2016 we were able to raise more than $490,000 thanks to the support of our donors.

We’re committed to keeping our backers updated on all projects and DRC happenings, so we wanted to take time at the beginning of 2017 to remind ourselves and our donors of all the amazing things that happened in 2016.

In January, Sangeeta Dhawan, Ph.D. at UCLA School of Medicine started off the year with her project, Making More and Better Insulin Producing Cells with Cell Regeneration. We were able to help her raise more than $30,000.

Dr. Sangeeta Dhawan

 

In February, we launched another project, Replacement Beta-Cells From An Unexpected Source, a research study conducted by Joseph Lancman, Ph.D. — Sanford Burnham Prebys Medical Discovery Institute. We were able to raise more than $45,000 in support of this project.

Dr.Lancman in Lab

In April, we celebrated World Health Day. This year’s theme was Beat Diabetes, and we encouraged our donors and supporters to get involved in the global fight against diabetes.

In May, another project launched, and we were able to help Peter Thompson, Ph.D. at University of California San Francisco raise more than $30,000 for his project, Regrowth of Beta Cells with Small Molecule Therapy.

Peter Thompson - Regrowth of beta cells with small molecule therapy

Another new project came online in July; Agata Jurcyzk, Ph.D. of the University of Massachusetts Medical School, What is the Connection Between T1D and Depression?

Agata-Headshot

August was a busy month for us at DRC. In mid-August, we partnered with the diaTribe Foundation for Brews & Blood Sugar. More than 100 people joined us to samples beer from one of San Diego’s premier breweries, to learn how different varieties of beer affect blood sugar and support efforts to find solutions for those with diabetes. We also launched our T1D resource center in August, where we’ve curated the best information out there pertaining to T1D. Lastly, we launched a project to raise funds for Gene-Specific Models and Therapies for Type 1 Diabetes, research being conducted by Jeremy Racine, Ph.D. of The Jackson Laboratory.

jeremy_racine_lab

In September, we were honored to be featured by The Huffington Post. We also launched our campaign on Gladitood, which helped us raise money and support for our General Fund as we began to close out the year.

In November, we celebrated National Diabetes Month. As a part of these celebrations, we launched our Double Your Dollars campaign, where every dollar donated to the General Fund was matched 100%. We upped the ante on Cyber Monday, doubling each match, making donations go even further. All told, we raised more than $80,000 in November. Additionally, we hosted a Crowdfunding Science event on Cyber Monday, where attendees joined three Rancho Santa Fe Foundation Donor Advised Fund families to learn about an exciting, successful and innovative crowdfunding platform for scientific research.

doubledollarsplaceholder

In December, we started a new blog series to help our donors meet the board, and we began by introducing you to Alberto Hayek, M.D., President of DRC.

This past year was monumental for DRC, and 2017 is already off to a great start with the launch of a new research project, Determining How Other Cells (Non-Beta) In The Pancreas Affect Diabetes by Jeffrey D. Serrill, Ph.D. of City of Hope, Los Angeles, California. We’re looking forward to seeing what the year holds as we fund research projects that will bring us closer to preventing, treating and curing T1D.

Learn More +
ETH Researchers T1D

New Weapon Against Diabetes

Original article published by ETH Zurich on December 1, 2016. Click here to read the original article.

Researchers have used the simplest approach yet to produce artificial beta cells from human kidney cells. Like their natural model, the artificial cells act as both sugar sensors and insulin producers.

Researchers led by ETH Professor Martin Fussenegger at the Department of Biosystems Science and Engineering (D-BSSE) in Basel have produced artificial beta cells using a straightforward engineering approach. These pancreatic cells can do everything that natural ones do: they measure the glucose concentration in the blood and produce enough insulin to effectively lower the blood sugar level. The ETH researchers presented their development in the latest edition of the journal Science.

Previous approaches were based on stem cells, which the scientists allowed to mature into beta cells either by adding growth factors or by incorporating complex genetic networks.

For their new approach, the ETH researchers used a cell line based on human kidney cells, HEK cells. The researchers used the natural glucose transport proteins and potassium channels in the membrane of the HEK cells. They enhanced these with a voltage-dependent calcium channel and a gene for the production of insulin and GLP-1, a hormone involved in the regulation of the blood sugar level.

Voltage switch causes insulin production

In the artificial beta cells, the HEK cells’ natural glucose transport protein carries glucose from the bloodstream into the cell’s interior. When the blood sugar level exceeds a certain threshold, the potassium channels close. This flips the voltage distribution at the membrane, causing the calcium channels to open. As calcium flows in, it triggers the HEK cells’ built-in signalling cascade, leading to the production and secretion of insulin or GLP-1.

The initial tests of the artificial beta cells in diabetic mice revealed the cells to be extremely effective: “They worked better and for longer than any solution achieved anywhere in the world so far,” says Fussenegger. When implanted into diabetic mice, the modified HEK cells worked reliably for three weeks, producing sufficient quantities of the messengers that regulate blood sugar level.

Helpful modelling

In developing the artificial cells, the researchers had the help of a computer model created by researchers working under Jörg Stelling, another professor in ETH Zurich’s Department of Biosystems Science and Engineering (D-BSSE). The model allows predictions to be made of cell behaviour, which can be verified experimentally. “The data from the experiments and the values calculated using the models were almost identical,” says Fussenegger.

He and his group have been working on biotechnology-based solutions for diabetes therapy for a long time. Several months ago, they unveiled beta cells that had been grown from stem cells from a person’s fatty tissue. This technique is expensive, however, since the beta cells have to be produced individually for each patient. The new solution would be cheaper, as the system is suitable for all diabetics.

Market-readiness is a long way off

It remains uncertain, though, when these artificial beta cells will reach the market. They first have to undergo various clinical trials before they can be used in humans. Trials of this kind are expensive and often last several years. “If our cells clear all the hurdles, they could reach the market in 10 years,” the ETH professor estimates.

Diabetes is becoming the modern-day scourge of humanity. The International Diabetes Federation estimates that more than 640 million people worldwide will suffer from diabetes by 2040. Half a million people are affected in Switzerland today, with 40,000 of them suffering from type 1 diabetes, the form in which the body’s immune system completely destroys the insulin-producing beta cells.
[su_button url=”https://www.ethz.ch/en/news-and-events/eth-news/news/2016/12/artificial-beta-cells.html?elqTrackId=3118751de0d340b8bf7c42cba3a3a7d2&elq=3ba510d3772545b28e0cfdf8c559795e&elqaid=17762&elqat=1&elqCampaignId=10602″ target=”blank” style=”flat” background=”#64b243″ size=”6″ center=”yes” radius=”5″ icon=”icon: angle-right”]Continue Reading[/su_button]

Learn More +
diabetes research

Economic 3D-Printing Approach for Transplantation of Human Stem Cell-Derived β-Like Cells

Original article published by IOP Science on December 1, 2016. Click here to read the original article.

Abstract

Transplantation of human pluripotent stem cells (hPSC) differentiated into insulin-producing βcells is a regenerative medicine approach being investigated for diabetes cell replacement therapy. This report presents a multifaceted transplantation strategy that combines differentiation into stem cell-derived β (SC-β) cells with 3D printing. By modulating the parameters of a low-cost 3D printer, we created a macroporous device composed of polylactic acid (PLA) that houses SC-β cell clusters within a degradable fibrin gel. Using finite element modeling of cellular oxygen diffusion-consumption and an in vitro culture system that allows for culture of devices at physiological oxygen levels, we identified cluster sizes that avoid severe hypoxia within 3D-printed devices and developed a microwell-based technique for resizing clusters within this range. Upon transplantation into mice, SC-β cell-embedded 3D-printed devices function for 12 weeks, are retrievable, and maintain structural integrity. Here, we demonstrate a novel 3D-printing approach that advances the use of differentiated hPSC for regenerative medicine applications and serves as a platform for future transplantation strategies.

[su_button url=”http://iopscience.iop.org/article/10.1088/1758-5090/9/1/015002/meta?elqTrackId=96062d779f46499eb7cc18d9ab30d665&elq=3d599e01edda49df92afa531a8a717ae&elqaid=17717&elqat=1&elqCampaignId=10609″ target=”blank” style=”flat” background=”#64b243″ size=”6″ center=”yes” radius=”5″ icon=”icon: angle-right”]Continue Reading[/su_button]

Learn More +

How to Honor National Diabetes Month

Diabetes affects more than 29 million Americans and is the 7th leading cause of death in the US today. While Diabetes Research Connection fights to find a cure for type 1 diabetes every month, we give an extra push during the month of November for National Diabetes Month. There are many ways you can contribute during National Diabetes Month, including our Double Your Dollars campaign, shopping with AmazonSmile, volunteering at a hospital or research center or participating in a walk/run benefiting diabetes. Read below for more details on how you can get involved.

Make Your Donation Count Twice As Much With Double Your Dollars

In honor of National Diabetes Month, DRC is matching every dollar donated to the General Fund (up to $50,000) between now and November 30 through our Double Your Dollars campaign. It is the perfect time to make a difference in the T1D community by donating to our campaign and making your charitable act go twice as far.

Every donation helps early-career scientists launch their ideas and allows 100% of funds directed for T1D research to go directly to the researcher’s laboratory. Donations are critical for us to operate our innovative platform, even though DRC’s operating costs are kept less than 10% of gross revenue.

Make a Difference While Shopping on Amazon

November is the month where most of us start our holiday shopping- the excitement of the good deals of Black Friday and Cyber Monday are almost too much to bear. If the crowds and late hours of Black Friday intimidate and overwhelm you and Cyber Monday is more your speed, try using AmazonSmile to accommodate all your holiday shopping needs. AmazonSmile is Amazon’s nonprofit charitable support arm and allows the shopper to choose from a variety of charities who will benefit monetarily from their purchases, without any additional cost to the shopper.

To honor National Diabetes Month, you can do your holiday shopping through AmazonSmile and select Diabetes Research Connection as your charity of choice so that a portion of your purchase goes to finding a cure for those with T1D. Visit smile.amazon.com to get started.

Participate in a Walk or Run

A great way to get involved with the fight to find a cure for T1D and honor National Diabetes Month is to participate in a walk/run benefiting diabetes. Not only would it be benefitting a great cause, but doing a walk/run is a great way to be active with a big group of people. There are many options available depending on what area you live, so it helps to do some research to find one that suits your fitness level needs.

Volunteer at a Hospital or Research Center

It’s very easy to find places that need volunteers, such as hospitals or research centers. Not only is it a good time of year to donate your time because of the holiday giving season, but also because of National Diabetes Month- you can opt for a research center or a hospital that specializes in T1D. This is the perfect way to give back for those who can’t donate money.

For more information on how you can get involved in the fight to find a cure for T1D, and to receive frequent updates about DRC, sign up for our newsletter!

Learn More +
t1d research

Antibiotic-Mediated Gut Microbiome Perturbation Accelerates Development of Type 1 Diabetes in Mice

Original article published by PubMed on August 22, 2016. Click here to read the original article.

The early life microbiome plays important roles in host immunological and metabolic development. Because the incidence of type 1 diabetes (T1D) has been increasing substantially in recent decades, we hypothesized that early-life antibiotic use alters gut microbiota, which predisposes to disease. Using non-obese diabetic mice that are genetically susceptible to T1D, we examined the effects of exposure to either continuous low-dose antibiotics or pulsed therapeutic antibiotics (PAT) early in life, mimicking childhood exposures. We found that in mice receiving PAT, T1D incidence was significantly higher, and microbial community composition and structure differed compared with controls. In pre-diabetic male PAT mice, the intestinal lamina propria had lower Th17 and Treg proportions and intestinal SAA expression than in controls, suggesting key roles in transducing the altered microbiota signals. PAT affected microbial lipid metabolism and host cholesterol biosynthetic gene expression. These findings show that early-life antibiotic treatments alter the gut microbiota and its metabolic capacities, intestinal gene expression and T-cell populations, accelerating T1D onset in non-obese diabetic mice.

[su_button url=”https://www.ncbi.nlm.nih.gov/pubmed/27782139?dopt=Abstract&utm_source=twitterfeed&utm_medium=twitter#” target=”blank” style=”flat” background=”#64b243″ size=”6″ center=”yes” radius=”5″ icon=”icon: angle-right”]Continue Reading[/su_button]

Learn More +
insulin pen

In-Depth: Five innovators who see the future of connected insulin delivery in pens, not pumps

Original article published by Mobi Health News on October 21, 2016. Click here to read the original article.

Medtronic. Dexcom. Abbott. Sanofi. Google. A lot of very large, well-known companies are investing heavily into innovating the diabetes space, and that innovation is exciting. But a disproportionate amount of the innovation around insulin delivery focuses on the insulin pump, a delivery device that’s only used by a small percentage of insulin users. Most insulin users — between 70 and 93 percent, depending on whose figures you use and what part of the world you’re looking at — use an insulin pen, a device developed by Novo Nordisk in the eighties and relatively unchanged since then.

A small crop of startups has decided that it’s high time connected health innovation came to the insulin pen. One of the leaders of the pack — a San Diego startup called Companion Medical — is led by a veteran of those big company efforts. CEO Sean Saint previously worked at Medtronic, Dexcom, and Tandem Diabetes.

“Here I am at Tandem asking this question ‘How do we get more people to use the insulin pump?’” he told MobiHealthNews. “And that’s the right question for Tandem. So we’re asking questions like ‘Why will you or won’t you use an insulin pump?’ and we’re getting answers like tubing, cost, complexity that sort of thing. To be frank I was getting a little frustrated with the patient, and asking ‘Why won’t you use this great technology we’re developing?’”

That’s when Saint found himself on the other side of the pump: He was diagnosed with Type 1 diabetes.

“For me it caused me to look in the mirror and say ‘Stop being frustrated with people who won’t use your great technology. They have their reasons.’ Instead, let’s ask a different question. Let’s ask ‘How do we bring the benefits of insulin pumps to the 93 percent of people who use insulin who are pen and syringe users?’”

Companion Medical, with backing from Eli Lilly and Company, announced this past summer that it had FDA clearance to do just that. And in the months that followed, three other companies came out of stealth announcing that they were working on similar offerings. A fifth, Emperra, has been quietly developing its own smart insulin pen in Germany and will soon be ready to take it to other parts of the world.

First Patients Pending, a London company that had already innovated the insulin pen space with a non-connected cap called Timesulin, announced that it was working on a smartphone-connected product. Then an Irish group called Innovation Zed, which also had a pre-existing nonconnected insulin pen accessory, announced its plans to enter the space. And finally a second US company, Cambridge, Massachusetts-based Common Sensing, announced a trial funded by Sanofi and led by the Joslin Diabetes Center.

What all these companies have in common is they recognize that, though it might be the focus of big companies, the insulin pump is not the preferred device of the masses.

“We’ve talked to a lot of people in the space and what we’ve learned is that, first of all, not everyone prefers pumps,” James White, president of Common Sensing, told MobiHealthNews. “There’s people that have access to them and a lot of them choose not to use pumps. There’s people who want access and can’t get them. But we’re pretty sure for the next five to 10 years there is not a pump both for the market and everyone’s preferences, so there won’t be that ‘coming together’ to take any kind of authority in the market. We talk with pharma companies and we hear a fair amount of their predictions. And as nice as the pump is for some people, for a lot of people it just doesn’t make sense.”

Creating a connected insulin pen is a leap of several steps at a time. Unlike, say, fingerstick glucometers, which have always collected data but didn’t always store or transmit it, the traditional insulin pen doesn’t collect data at all. If patients want a record of how much insulin they used, they have to eyeball it and write it down. A connected pen is first and foremost an adherence play, but it can go much further — by interfacing with glucometer or CGM data or self-reported food data, a connected insulin pen could allow pen users to live some variant of the artificial pancreas dream, which up until now has only been a possibility for pump users.

“I believe that the insulin data is the most important data that we have,” Patients Pending CEO and cofounder John Sjölund told MobiHealthNews. “Currently, every time you turn the dial and inject yourself, it just disappears. All of the blood sugar and especially the CGMs, they exist, they’re good enough and the apps exist and they’re getting better. But the insulin information is just missing. And that’s the piece of the pie we bring out, and what’s important is the accuracy we bring to the table.”

From insulin adherence to insulin management

One way in which the various companies in this space differ is exactly what problem they’re using connectivity to solve. For most of the startups right now, the objective is simply to collect the data of how a often a patient uses an insulin pen and how much insulin they inject, and to use that data to drive adherence.

“The [device] we announced this week is the first step, we’re tackling that 60 to 70 percent adherence rate of insulin users,” John Hughes, CEO of Innovation Zed, told MobiHealthNews. “The insulin user audience are at a very low level of compliance. You show up at the doctor and inevitably when you get there, you don’t have your records. They’re working on anecdotal data. We have focus groups [of doctors] that we work with and they tell us, they cannot trust the data that they’re getting.”

The most basic advantage of tracking pen usage doesn’t require connectivity at all. Patients Pending’s original product, Timesulin, is a cap for insulin pens that starts a timer when it’s removed and replaced, so that patients can always look at it and see when their most recent dose was. Even this is useful information that can help prevent double dosing.

Adding connectivity also allows a device to send alerts about a missed dose to the patient’s smartphone, or to alert a patient’s physician, caregiver, or coach when they miss a dose. That’s where James White, president of Common Sensing, sees the initial value of the technology.

“Right now, people go home from the doctor after being given insulin for the first time and they don’t have another touchpoint for three months with anything,” he told MobiHealthNews. “Their data is theirs, they’re looking at it, they often don’t know how to interpret it because they weren’t taught at the doctor, and more than half of those people, in those first three months, drop off. They come back and they’re not using it. They haven’t filled all their prescriptions, things like that. The reasons vary a ton. Sometimes people aren’t prescribed needles to use with their insulin pen. Some people don’t know how to use it, they’re afraid to inject something new, or they don’t remember the instructions.”

Common Sensing’s Gocap is focused on collecting the data and sending it to a smartphone app, from whence it can also be sent to a data aggregator or a caregiver. The company is looking into developing its device for different levels of tech savvy: some use cases might allow for more patient engagement while others are designed to be more passive.

“We’ve sent this home now with a fair number of people and we’ve seen a wide spectrum. Some people don’t have a smartphone, they want to keep a very cheap mobile data device plugged into the wall and never look at it and use this hardware device. They know the data’s going somewhere, to their doctor, and that’s all they care about,” he said. “And then some people are the power users, just like any product. They want to get into the data, enable that exact setting, see every new dose they’ve done, understand the accuracy and the glucose readings.”

As an adherence play, the space is very reminiscent of another medication delivery device that’s recently blossomed into a burgeoning industry in digital health: the connected, sensor-laden inhaler. After some early success by companies like Propeller Health, the connected inhaler space rapidly became a hot acquisition target for the pharmaceutical industry. The comparison isn’t lost on insulin pen innovators.

“What I like about insulin and why we made it a first target for the company is that right now, you know, inhalers can be expensive when they’re taken incorrectly, but the cost burden on the healthcare system right now of incorrect insulin use is far greater than any other medication,” White said. “Pharma right now loses on the order of a third of revenue they could be getting just because a third of prescriptions are never picked up. And not only that but among people who are using it it’s not being used very effectively. So a company that can differentiate in making their insulin more effective stands to benefit, and that’s why companies like Sanofi are interested.”

So far at least two major pharma companies have invested in this space: Sanofi has invested in Common Sensing and Lilly has invested in Companion Medical. Neither of those investments has “strings attached” according to the two companies, but the interest is certainly notable.

But Sean Saint, of Companion, sees the insulin pen space as being much deeper than the inhaler space.

“The connected inhaler market is a compliance tool,” he said. “And that’s wonderful, because we all know about compliance problems. And we have 100 percent of that benefit. Same exact thing. But one of the biggest problems in diabetes is not that I don’t remember to take my dose, but how much do I take? I know my blood sugar, I know what I have recently eaten and my recent insulin doses, so how much insulin do I take right now? That’s what a dose calculator provides and we are the only company I am aware of in the connected pen/cap space that has a dose calculator and certainly the only one cleared by FDA.”

That’s why Companion Medical has FDA 510(k) clearance while some of the other companies are holding off. (Common Sensing is registered with the FDA but White doesn’t believe it’s current adherence-focused offering requires premarket approval). By taking the next step and offering a dose calculator, and starting to offer advice on how much insulin a patient could take, the company enters a new risk category, but also potentially offers even more benefits to people with diabetes.

Saint’s company’s goal is to create a learning dose calculator, which will use the same kind of algorithms closed-loop “artificial pancreas” systems use, but with a connected pen rather than a pump as the delivery method.

“You can call it a poor man’s artificial pancreas or artificial pancreas light or whatever you want to call it, but it’s basically using the same algorithms and applying them to mobile injection therapy,” he said. “Nobody’s ever done that, so nobody knows what the ultimate clinical benefit of that will be, but we know that there will be one.”

For Patients Pending and Common Sensing, that functionality could be in the cards eventually, but they don’t see a reason to reinvent the wheel. Once the data is accurately collected and sent to a smartphone, third party apps can focus on making it actionable for the user.

“We’ve had a lot of experience developing software, but we’ve also learned how tricky healthcare and medical apps is,” Patients Pending’s Sjölund said. “And there are a lot of apps in the space already.”

Pens, caps, and wraps

Another differentiating factor between the various companies is the form factor. Only two of the five companies make a full-on insulin pen, two make smart pen caps, and one, Innovation Zed, makes a unique wraparound device that fits on the back part of the pen.

There are different facets to the decision. One is that, most companies agree, creating an entire insulin pen is a more daunting endeavor than creating an add-on.

“At first we thought, hey let’s build a digital pen,” Innovation Zed’s John Hughes told MobiHealthNews. “Not being very experienced in medical device market we were quickly put off by the regulatory implications of such a device. We thought, it will take us seven years to do that. So we came up with the concept of an add-on technology.”

Saint, at Companion, echoed these sentiments, though his company did decide to go down the full pen road (as did Emperra in Germany).

“One thing I can absolutely assure you: we did not design a full insulin pen instead of a cap because we thought it would be fun,” he said. “We considered the different solutions and we decided that the only way we could provide a solution to the patient that was going to be truly transparent to their current therapy was to control the whole experience. And that’s why we went with the pen.”

Controlling the whole device simplifies the design of the sensors and allows Companion Medical to include a larger battery — their device will last a year with no need to plug in or replace batteries, compared to Common Sensing’s cap, which will have to be plugged in once a week (though White says they’re also working on a version with a longer-term battery). It also allows for some complex features, like compensating for inaccuracies that can be caused by priming the pen (activating it without dosing to eliminate air bubbles).

On the other hand, add-on solutions have some added convenience in the market. While Companion’s device will replace a durable pen, other devices can work with disposable insulin pens, which are currently more popular.

“We diabetics are a pretty conservative lot and we don’t like changing our habits,” Innovation Zed’s Hughes said. “So when we get used to insulin pens we want to keep them. So we offer them a sleeve that wraps around the pen and a timer devices that clips on to the sleeve and is triggered only when the injection is completed.”

Saint thinks the additional value will be enough to persuade patients to change their habits. Caps are also likely cheaper to produce, but that could be a moot point if health insurers start routinely reimbursing for the devices.

The path to market and reimbursement

Although the space is just starting to emerge into public consciousness, the players have been working quietly on it for years, and now the race to market is on.

One company, Emperra, has a big lead, but it has only focused on its native Germany. It’s CE-marked Esysta pen is already on the market in Germany and reimbursable by German payers.

“We are on the market,” Emperra CEO Christian Krey told MobiHealthNews in an email. “It is working and has proved success. We are reimbursed by all health insurers in Germany. We have a unique software, that connects patients, relatives, nurses and physicians with high secured servers. We have unique contracts with health insurers that pay not only for the hardware, but also for data sharing between patient and the physician as well as for coaching the patients, depending on their needs.”

He also said the company has “proven success in a field trial together with a health insurer, that the use of the ESYSTA system leads to significant lowering of HbA1c without more usage of insulin.”

Emperra is already making inroads in the rest of the EU and in the US. The company has filed for FDA approval and hopes to enter the US market next year.

Innovation Zed also has trial data showing its product improves HbA1c, thanks to a partnership with the UK’s NHS. The Irish company also has a joint venture with Swedish injectables manufacturer SHL Group that could help them bring their new solution to market quickly once it’s fully developed. They’re targeting a 2017 European launch for the connected product and eyeing the US shortly thereafter. They are hoping for reimbursement from national systems like the NHS and from private payers in the US.

Common Sensing recently announced a clinical trial with Joslin Diabetes Center. Their product is ready to go, White says.

“The device is ready now, so what we’re looking for is the most efficient way to commercialize it with those services to insurers, self-insured employers, etc.,” he said.

Similarly, Companion Medical’s Sean Saint says his company is planning for commercialization in 2017, having been focused up until now on the FDA clearance.

“Smart pens are not a category yet,” he said. “We have the first cleared smart pen, and we’re going to be in the unenviable position of starting to figure out pricing on that. Pricing what amounts to a new category of devices can be very challenging. On the one hand, we have the negative that we look a lot like a traditional insulin pen. On the other hand we have the positive that we believe we offer a very significant clinical benefit over and above traditional insulin pens and potentially as much as a pump. So certainly the pricing will be in between traditional insulin pens and pumps. But I can’t tell you exactly where at this point.”

He says there will be some work to do for reimbursement, but he’s confident that the device will eventually be covered via the pharmacy benefit of a prescription drug plan. White agrees that reimbursement is inevitable.

“The general idea is we don’t want people to have to pay for this out of pocket,” he said. “The idea that patients are causing the problem right now is one that shouldn’t really exist in any modern society. And that means that patients shouldn’t be responsible for fixing this problem in terms of paying for their own medicine. So in our minds, the people who stand to gain the most from this are insurance companies and pharma companies. If someone switches from taking their insulin to not taking their insulin, in the next year they will probably cost on the order of $2,500 more per year and the insurer’s paying for all of that.”

Innovation in the diabetes space is coming in a lot of forms from a lot of places, from the artificial pancreas, to AI coaching, to glucose-sensing contact lenses. But when it comes to making a big difference right now in the lives of many insulin-using type 1 diabetics, smart pens might just be the next big thing. As Saint pointed out, the market is so much larger for pens that even a modest improvement in diabetes management could help a lot of people.

“The health economics of smart pens are phenomenal when you start to think about them,” he said.

[su_button url=”http://www.mobihealthnews.com/content/depth-five-innovators-who-see-future-connected-insulin-delivery-pens-not-pumps?mkt_tok=eyJpIjoiTW1Vd056UTBOR1kyTlRndyIsInQiOiJKbkRadjFnbGdXOTR1UVwvNTJsZFNGanNDaXc5Ylo0bGhycEhjSnVcL2RNWlFUWFRcL3Y3WUp6TFRwaVA5TTQ0QzFyVXU5SVNhblwvdGw5REZSYk5jWTZUeGpMcGdBVzl4NnVLS2J1bXlTbW1DdEU9In0%3D” target=”blank” style=”flat” background=”#64b243″ size=”6″ center=”yes” radius=”5″ icon=”icon: angle-right”]Continue Reading[/su_button]

Learn More +
Gladitood

Support a Cure for Type 1 Diabetes on Gladitood

Millions of children and adults struggle with type 1 diabetes (T1D). Throughout the month of October, we’ll be raising money to help find a cure on Gladitood, a crowdfunding platform that helps nonprofits raise funds for important causes. This is an exciting opportunity but we need your help

Consider Autumn, a woman in her mid-20s who was diagnosed at the age of nine. Every day she is carefully balancing her blood sugar through painfully pricking her fingers to manage her blood sugar. She’s been hospitalized for diabetic ketoacidosis, a condition where they body produces excess blood acid, which can quickly become fatal if not treated. Diabetes doesn’t just affect her, it affects her family, friends and co-workers too.

We need to raise $5,000 by the end of October.

How Can You Help?

Donate to Diabetes Research Connection on Gladitood. Donating to DRC through Gladitood is easy. Simply visit our campaign page, choose a donation level to the right that you’d like to contribute to, then follow the prompts to donate through Gladitood’s secure platform. In exchange for donating, you’ll be able to choose from a variety of “rewards,” ranging from a Facebook shout-out, to tickets to our Brews and Blood Sugar event, to a Q&A session with a T1D researcher. There is no minimum or maximum donation; donors can contribute as little or as much as they want, and all donations are tax-deductible as DRC is a 501(c)(3) nonprofit organization.

Spread the word about our Gladitood campaign! Whether you post about it on Facebook, email it to your contacts or share the link with your co-workers, we’re grateful for everyone who shares our project and helps us raise $5,000 through Gladitood. For those that want to be more involved, Gladitood allows volunteers to create a fundraising page, set a personal fundraising goal, and share their unique URL link with their network in order to raise money on behalf of DRC.

Why Is DRC Raising Money on Gladitood?

Gladitood offers the ability for donors to fundraise on DRC’s behalf by creating and sharing a custom fundraising page with your network of family and friends. Running a project on Gladitood helps spread the word about our mission, just by taking our organization to donors looking for a place to give. The more visibility, the more likely we are to meet our goal and continue to fund innovative, peer-reviewed T1D research.

How Will the Money Raised Through Gladitood be Used?

Donations to the General Fund collected through Gladitood will help early-career scientists get their ideas off the ground by providing funds to conduct peer-reviewed research designed to prevent, cure and treat T1D. The General Fund, after reasonable reserves, may be used to complete funding for research projects that are short of their goal. DRC’s operating costs are kept as low as possible and are targeted to be less than 10% of gross revenue.

Unfortunately, scientific research is expensive. Just consumable supplies needed for a research project can cost $20,000 or more. By raising money that goes directly to the scientists researching T1D, we’re able to ease the financial burden of research and fight for a cure for T1D.

Visit our Gladitood campaign page today to support our T1D research and help us reach our $5,000 goal by the end of October.

Learn More +
DRC

An Important Talk About The Importance Of Diabetes Awareness

Original article published by The Huffington Post. Click here to read the original article.

National Diabetes Awareness Month is right around the corner, and it brings up the concern regarding how huge of an issue diabetes really is. A spokesperson from Diabetes Research Connection has agreed to answer some questions regarding Type 1 diabetes and the research that is being conducted to understand this autoimmune disease more.

1. Can you tell us a little more about type 1 diabetes; how is it different from type 2?

Type 1 diabetes (T1D) is a chronic autoimmune disease, like multiple sclerosis and muscular dystrophy. T1D is the result of the human immune system mistaking the body’s beta cells, which produce insulin, for foreign cells and destroys them. These beta cells produce insulin in response to elevated blood sugar levels. A person with T1D must constantly test his or her blood sugar and inject insulin or use an insulin pump to normalize blood glucose levels. Currently, there is no known cure for T1D.

Type 2 diabetes (T2D) is much more common than T1D. While the causes for T2D aren’t fully understood, excess weight, inactivity, age and genetics contribute to the development of this disease. Patients with T2D make insulin, but their cells can’t respond to it adequately. In some cases, T2D can be controlled by exercise, diet and weight loss.

Diabetes is the leading cause of adult blindness, kidney failure, cardiovascular disease, amputations, nerve damage and other complications. This is why the Diabetes Research Connection (DRC) supports research designed to prevent, cure and better the disease.

2. Explain to us what you do to research Type 1 Diabetes.

DRC is a nonprofit organization headquartered in San Diego, California. Established in 2012, DRC’s mission is to connect donors with early-career scientists enabling them to perform peer-reviewed, novel research designed to prevent and cure T1D, minimize its complications and improve the quality of life for those with the disease.

Researchers from across the country submit a grant application to members of DRC’s Scientific Review Committee, which is comprised of over 80 of the leading U.S. diabetes experts. Each research proposal is carefully scrutinized for innovation, value and feasibility.

Approved projects receive up to $50,000 in as few as 12 weeks. 100% of funds go directly to each scientist’s lab. To ensure transparency, each investigator provides updates to donors on their project. Final outcomes are posted on DRC’s website. This openness informs the research community of credible, new science. Research redundancy is less likely to occur, resulting in donated and government funds being used more efficiently.

3. There is no cure for Type 1 Diabetes, but do you think that could change anytime soon?

The discovery that insulin injections could treat T1D almost 100 years ago is the seminal finding and access to insulin is a daily necessity for people with this disease. There are a number of current research efforts to improve how external insulin is given in order to most closely control blood glucose levels, andthat is perhaps the most exciting area of medical research in our future. There are also many scientists working on preventing the onset of T1D or curing it after is has developed. Cells that can replace those lost in T1D and T2D are now a reality in several laboratories worldwide. It may be possible to create a new type of beta cell supply derived from stem cells. By using gene splicing, engineered beta cells may avoid rejection by the immune system. This futuristic approach has tremendous potential providing that the protein responsible for the immune attack to beta cells is identified, successfully targeted and silenced. Lastly, these designer cells should perform as intended without adverse side effects. A clinical trial has begun using human beta cells derived from embryonic stem cells and implanted under the skin in protective capsules to avoid their immune rejection.”

4. What are some of the greatest breakthroughs your scientists have had on a project?

Todd Brusko, Ph.D., from the University of Florida, completed his project, “Engineering Immune Cells To Stop Autoimmune Attacks” in December of 2015. The goal of his DRC supported project was to create a technology platform that would enable an optimized Treg cell (a specialized set of white cells that appear to interfere with the immune damage to beta cells) therapy for the treatment of type 1 diabetes. Therefore, Dr. Brusko set out to manufacture biodegradable nanoparticles that would release a Treg growth and survival factor binding to Treg cell surfaces. In animal experiments, his initial data supports the notion of improved engraftment and function. These findings offer critical proof-of-principle data that is closely watched by those with T1D because it addresses an important hurdle that must be overcome for a cure. If successful, this method will increase the number of protective cells which can help prevent further destruction of remaining beta cells.

Kristin Mussar, Ph.D. Candidate, from the University of Washington, completed her project, “Creating New Insulin-Producing Cells To Repair Damaged Pancreas” in August of 2016. In her project, Mussar identified a population of white cells called macrophages residing in the pancreas of newborns that is necessary for islet cells to expand in number as well as to mature into functional insulin-producing cells. Mussar found that a functionally similar population capable of boosting islet proliferation exists in the bone marrow of adult individuals, which suggests that there might be potential for islet repair in adults. The lab Mussar conducts her research in is currently investigating whether this bone marrow population can be used as a cell therapy to enhance the repair process of islet cells in adult mouse models of injury. This project is important because it has identified a different set of white blood cells that may allow the proliferation of insulin producing cells in the pancreas of diabetic patients, offering hope for a cure.

5. November is National Diabetes Awareness Month, how will your organization be promoting the Cause?

We’re launching a 30-day matching gift campaign to promote our General Fund. The fund covers program costs that support our research projects, as well as operating expenses. During the Double Your Dollars for Diabetes campaign, DRC will match donations made to the fund (up to $25,000 in matching), and on Giving Tuesday, DRC will quadruple its matching contribution. In addition, we are encourage holiday shoppers to purchase gifts through the AmazonSmile Program and select DRC as their nonprofit of choice to receive a small donation from the online retailer. More information will be available on our website prior to our November 1st launch.

6. Where can people learn more about your research projects?

People can learn more about DRC and our projects by visiting our website at drcsite.wpengine.com. We encourage visitors to join the DRC family by signing up for our monthly newsletter or becoming a donor.

Learn More +
t1d research

Safety of a Hybrid Closed-Loop Insulin Delivery System in Patients With Type 1 Diabetes

Original article published by The Journal of the American Medical Association. Click here to read the original article.

Closed-loop artificial pancreas technology uses a control algorithm to automatically adjust insulin delivery based on subcutaneous sensor data to improve diabetes management. Currently available systems stop insulin in response to existing or predicted low sensor glucose values, whereas hybrid closed-loop systems combine user-delivered premeal boluses with automatic interprandial insulin delivery. This study investigated the safety of a hybrid closed-loop system in patients with type 1 diabetes.

Methods

Patients aged 14 to 75 years with type 1 diabetes for at least 2 years, glycated hemoglobin (HbA1c) less than 10%, and more than 6 months of insulin pump use were recruited from 10 centers (9 in the United States, 1 in Israel) between June 2, 2015, and November 11, 2015. This before and after study had a 2-week run-in period (baseline) for patients to learn the devices without the automated features followed by a 3-month study period with the initial 6 days used to collect insulin and sensor glucose data for the hybrid closed-loop algorithm. In the study period, there was a 6-day hotel stay during which 1 day was used for frequent sampling of venous blood glucose to verify the accuracy of the system. The last patient visit was March 7, 2016. Two central and 4 local institutional review boards approved the study. Written informed consent was obtained from adults and parents, and written assent from minors.

The system included investigational continuous glucose monitoring sensors with transmitters, insulin pumps displaying real-time glucose data, a proprietary algorithm, and blood glucose meters. Patients were required to periodically calibrate sensors and enter carbohydrate estimates for meal boluses. Every midnight, multiple parameters were automatically adjusted by the algorithm.

Safety end points obtained during the run-in and study periods (including the hotel stay) were the incidence of severe hypoglycemia and diabetic ketoacidosis, serious adverse events, and device-related serious and unanticipated adverse events. Prespecified descriptive end points included time in open vs closed-loop systems; the percentage of sensor glucose values below, within, and above target range (71-180 mg/dL), including at night time; changes in HbA1c, insulin requirements and body weight; and measures of glycemic variability. End points were collected during both periods and analyzed with SAS(SAS Institute), version 9.4.

Results

Of the 124 participants (mean age, 37.8 years [SD, 16.5]; men, 44.4%), mean diabetes duration was 21.7 years, mean total daily insulin dose was 47.5 U/d (SD, 22.7), and mean HbA1c was 7.4% (SD, 0.9). Over 12 389 patient-days, no episodes of severe hypoglycemia or ketoacidosis were observed. There were 28 device-related adverse events that were resolved at home. There were 4 serious adverse events (appendicitis, bacterial arthritis, worsening rheumatoid arthritis, Clostridium difficile diarrhea) and 117 adverse events not related to the system, including 7 episodes of severe hyperglycemia due to intercurrent illness or other nonsystem causes.

The system was in closed-loop mode for a median of 87.2% of the study period (interquartile range, 75.0%-91.7%). Glycated hemoglobin levels changed from 7.4% (SD, 0.9) at baseline to 6.9% (SD, 0.6) at study end . From baseline to the end of the study, daily dose of insulin changed from 47.5 U/d to 50.9 U/d, and weight changed from 76.9 kg to 77.6 kg. The percentage of sensor glucose values within the target range changed from 66.7% at baseline to 72.2% at study end. Sensor and reference glucose values collected during the hotel stays were in good agreement, with an overall mean absolute relative difference of 10.3% (SD, 9.0).

Discussion

To our knowledge, this is the largest outpatient study to date and it demonstrated that hybrid closed-loop automated insulin delivery was associated with few serious or device-related adverse events in patients with type 1 diabetes. Limitations include lack of a control group, restriction to relatively healthy and well-controlled patients, the relatively short duration, and an imbalance between the length of the study periods. Differences in HbA1c levels may be attributable to participation in the study. A similar study in children is under way. Longer-term registry data and randomized studies are needed to further characterize the safety and efficacy of the hybrid closed-loop system.

[su_button url=”http://jama.jamanetwork.com/article.aspx?articleid=2552454″ target=”blank” style=”flat” background=”#64b243″ size=”6″ center=”yes” radius=”5″ icon=”icon: angle-right”]Continue Reading[/su_button]

Learn More +
continuous glucose monitoring

Does CGM Benefit Injection Users? Yes! Results from Dexcom’s DIaMonD Study

Original article published by diaTribe. Click here to read the original article.

Continuous glucose monitoring (CGM) is often considered a technology for insulin pump users – not those on injections. New results from Dexcom’s DIaMonD study, presented at the ADA Scientific Sessions, will hopefully change that.

DIaMonD examined if the addition of CGM in those on multiple daily injections (MDI) could help improve blood sugar control. In this six-month study, participants with an average starting A1c of 8.6% were given either “usual care” (fingersticks alone) or the use of CGM for 24 weeks, measuring changes in A1c, time-in-range, and other outcomes. MDI users that added CGM saw a meaningful reduction in A1c of 0.9%, compared to a 0.4% improvement in the fingersticks (control) group. CGM also cut hypoglycemia by 30% (23 fewer minutes per day) and reduced time spent over 180 mg/dl by 83 minutes per day, far exceeding results in the control group.

Dr. Howard Wolpert (Joslin Diabetes Center) summarized the implications of the DIaMonD study, asserting that healthcare providers should consider recommending CGM to ALL patients with type 1 diabetes who have not attained their glucose goals – not just those on insulin pumps. This would be a major change from current trends, where only ~7% of MDI users with type 1 diabetes use CGM in the T1D Exchange registry.

DIaMonD adds to the evidence that CGM improves time-in-range, reduces highs and lows, and improves A1c. This does not come as a surprise since glucose value and trend can be observed every five minutes and alarms sound for lows and highs, allowing people to recognize patterns, tighten the feedback loop, and take action to improve. We expect this technology to only improve as apps and software make CGM data more useful – particularly for those not on pumps.

[su_button url=”https://diatribe.org/does-cgm-benefit-injection-users-yes-results-dexcoms-diamond-study” target=”blank” style=”flat” background=”#64b243″ size=”6″ center=”yes” radius=”5″ icon=”icon: angle-right”]Continue Reading[/su_button]

Learn More +
diabetes research

Get Involved in Innovative Type 1 Diabetes Research

We were established in 2012 by five proponents of diabetes research, and our visionis to support innovative scientific inquiry until type 1 diabetes is eliminated. However, we can’t do it without the valuable contributions from our donors and supporters.

Want to get involved in type 1 diabetes research? Read below to find out how you can make a difference.

Help Fund Type 1 Diabetes Research

Many scientific breakthroughs come from the inventiveness of early-career scientists. Unfortunately, mainstream funding rarely goes to support these innovative researchers, with 97% of funding for type 1 diabetes research going to established scientists. This means that it’s often hard for new diabetes research ideas to get off the ground.

That’s where the Diabetes Research Connection comes in; we grant up to $50,000 to support type 1 diabetes research from early-career scientists.

Consider financially supporting one of the following type 1 diabetes research projects.

Gene-Specific Models and Therapies for Type 1 Diabetes

Multiple genetic factors contribute to type 1 diabetes, but researchers are limited to using mice models with one genetic profile. Jeremy Racine, Ph.D. of The Jackson Laboratory in Bar Harbor, Maine is working to create a new mouse model with a genetic blank slate for insertion of relevant HLA gene variants that are related to the development of diabetes. Additionally, he plans to test a therapy that has been specifically designed for a diabetes susceptible gene variation known as HLA-A*0201 (A2.1). Click here to support this project. 

Identify Biomarkers for Susceptibility to Both Type 1 Diabetes and Mental Disorders

Recent studies have found that those with diabetes have a much higher rate of depression, and young people with type 1 diabetes have a much higher rate of suicide than their peers. Agata Jurcyzk, Ph.D., a research instructor at the University of Massachusetts Medical School, is working to identify genetic signatures in white blood cells that distinguish non-progressor T1D patients and T1D patients that progress to psychiatric illness. Click here to support this project.

Regrowth of Beta Cells with Small Molecule Therapy

Type 1 diabetes develops when beta cells are destroyed and the body can no longer produce enough insulin to convert the sugar we eat into energy. Peter Thompson, Ph.D., a researcher at the University of California San Francisco Diabetes Center, is working to identify new events during the progression to T1D in order to design new interventions that could prevent or reverse the progression to T1D. Click here to support this project. 

Replacement Beta-Cells From An Unexpected Source

A cure for diabetes will involve replacing the insulin-producing beta cells that have been lost due to the disease. Joseph Lancman, Ph.D. of Sanford Burnham Prebys Medical Discovery Institute is researching to find a way to make in vivo cell lineage reprogramming safe and practical. This will make it possible to convert nearly any cell type into replacement beta cells, without removing them from the body. Click here to support this project.

Participate in Diabetes Research Studies

Diabetes Research Connection is currently partnering with four great research studies, but there are many more type 1 diabetes studies currently taking place. If you would like to get involved in these, consider participating in a type 1 diabetes clinical research study. We suggest checking out Type 1 Diabetes TrialNet.

TrialNet is a network of researchers seeking to prevent, delay or reverse the progression of type 1 diabetes. The organization works with 18 Clinical Centers in the U.S. and across the globe, and also partners with more than 150 medical centers and doctors’ offices.

Studies are available for those recently diagnosed with Type 1 diabetes, as well as those who have relatives with type 1 diabetes who are at a greater risk of developing the disease. You’ll need to participate in a screening to find out if you are eligible to join a TrialNet study.

For more information about type 1 diabetes research, sign up for our monthly newsletter!

Learn More +
Laboratory Equipment - microscope

New Approach for Regenerative Therapy

Original article published by HelmholtzZentrum munchen on June 12, 2016. Click here to read the original article.

Neuherberg, June 12, 2016. The marker Flattop subdivides the insulin-producing beta cells of the pancreas into those that maintain glucose metabolism and into immature cells that divide more frequently and adapt to metabolic changes. This could provide a starting point for regenerative diabetes therapies, as scientists of Helmholtz Zentrum München, in collaboration with colleagues of the Technical University of Munich and the German Center for Diabetes Research (DZD), report in the journal ‘Nature’.

The beta cells of the pancreas produce the metabolic hormone insulin when blood glucose levels rise, in order to keep glucose levels in equilibrium. If the beta cells are destroyed or lose their function, this can lead to serious diseases such as diabetes. However, not all beta cells are identical. “It has long been known that there are different subpopulations of beta cells,” said Professor Heiko Lickert, director of the Institute of Diabetes and Regeneration Research at Helmholtz Zentrum München. “But until now, the underlying molecular mechanisms have remained elusive.”

Flattop is a marker for mature beta cells

In the current study, the researchers led by Lickert searched for molecular markers subdividing the respective subgroups. One molecule, in particular, captivated their attention: the protein Flattop.* It was present in about 80 percent of all beta cells. These cells effectively determined the glucose concentration of their environment and secreted the corresponding amount of insulin, thus showing the metabolic properties of mature beta cells.

Cells without Flattop proliferate more frequently

Conversely, the team of researchers observed that beta cells in which no Flattop was measurable showed a particularly high rate of proliferation. “In our experimental model, these cells proliferated up to four times more often than the Flattop-positive cells,” said study leader Lickert.

A type of precursor cells?

To pursue the hypothesis that the actively dividing cells (without Flattop) could be precursors of metabolically active cells, the scientists made use of a genetic trick to map the fate of single cells. This so called lineage tracing revealed that the proliferative progenitor cells were able to develop into mature beta cells with metabolic properties. This was also the case, when the scientists placed them in an artificial mini-organ-like 3D environment. Moreover, genetic analyses confirmed that in beta cells without Flattop, primarily genes responsible for sensing the environment were expressed, while in cells with Flattop primarily classic metabolic programs took place.

“Our results suggest that the Flattop-negative cells are a kind of immature reserve pool, which constantly renews itself and can replenish the mature beta cells,” Lickert said. According to the study leader this new possibility of subdividing these two subgroups allows a comprehensive analysis of the signaling pathways involved. The results of the researchers raise hopes for the development of regenerative therapies: “The heterogeneity of the beta cells has been studied for more than 50 years, now with enabling technologies it looks like we are beginning to understand how the cells behave,“ said Lickert.

In the future, the scientist will focus on two major aspects: on the one hand in terms of regenerative therapy their goal would be to regenerate endogenous beta cells in a targeted manner to replace dysfunctional or lost cells in patients. On the other hand the findings are a milestone in the generation of functional beta cells from stem cells in cell culture for cell replacement therapy, which was not possible so far.

Further Information

Background:
* Flattop is part of the Wnt signaling pathway, which in particular regulates the development of tissues and cell functions.

**Lineage tracing is a method to map the fate of single cells. It is based on gene variants emitting a color signal upon induction of the respective gene. In this particular case cells without Flattop were colored in red and turned into green upon Flattop induction.

Original Publication:
Bader, E. et al. (2016). Identification of proliferative and mature β-cells in the islet of Langerhans, Nature, DOI: 10.1038/nature18624

Corresponding reviews of the research group:
Migliorini, A. et al. (2016). Impact of islet architecture on beta cell heterogeneity, plasticity and function, Diabetologia, doi: 10.1007/s00125-016-3949-9

Roscioni, S. et al. (2016). Impact of islet architecture on beta cell heterogeneity, plasticity and function, Nature Reviews Endocrinology, in press

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,300 staff members. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members.

The research activities of the Institute of Diabetes and Regeneration Research (IDR) focus on the biological and physiological study of the pancreas and/or the insulin producing beta cells. Thus, the IDR contributes to the elucidation of the development of diabetes and the discovery of new risk genes of the disease. Experts from the fields of stem cell research and metabolic diseases work together on solutions for regenerative therapy approaches of diabetes. The IDR is part of the Helmholtz Diabetes Center (HDC).

Technical University of Munich (TUM) is one of Europe’s leading research universities, with more than 500 professors, around 10,000 academic and non-academic staff, and 39,000 students. Its focus areas are the engineering sciences, natural sciences, life sciences and medicine, reinforced by schools of management and education. TUM acts as an entrepreneurial university that promotes talents and creates value for society. In that it profits from having strong partners in science and industry. It is represented worldwide with a campus in Singapore as well as offices in Beijing, Brussels, Cairo, Mumbai, San Francisco, and São Paulo. Nobel Prize winners and inventors such as Rudolf Diesel, Carl von Linde, and Rudolf Mößbauer have done research at TUM. In 2006 and 2012 it won recognition as a German “Excellence University.” In international rankings, TUM regularly places among the best universities in Germany.

The German Center for Diabetes Research (DZD) is a national association that brings together experts in the field of diabetes research and combines basic research, translational research, epidemiology and clinical applications. The aim is to develop novel strategies for personalized prevention and treatment of diabetes. Members are Helmholtz Zentrum München – German Research Center for Environmental Health, the German Diabetes Center in Düsseldorf, the German Institute of Human Nutrition in Potsdam-Rehbrücke, the Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Medical Center Carl Gustav Carus of the TU Dresden and the Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the Eberhard-Karls-University of Tuebingen together with associated partners at the Universities in Heidelberg, Cologne, Leipzig, Lübeck and Munich.

Learn More +
insulin shot

Type 1 Diabetes May be Triggered by Bacteria

Original article published by Medical News Today on May 17, 2016. Click here to read the original article.

Study co-author Dr. David Cole, of the School of Medicine at Cardiff, and colleagues –

The researchers recently published their findings in The Journal of Clinical Investigation.

Type 1 diabetes accounts for around 5 percent of all diabetes cases. Previously known as “juvenile diabetes,” the condition is most commonly diagnosed in children and young adults.

Type 1 diabetes arises when the body is unable to produce insulin – the hormone responsible for regulating blood glucose levels.

Killer T cells have high ‘cross-reactivity’

While the precise cause of type 1 diabetes is unclear, past research has shown that the condition occurs when killer T cells destroy beta cells – the cells in the pancreas that produce insulin.

In a previous study, Prof. Sewell and colleagues found high “cross-reactivity” among killer T cells, meaning that they can react to numerous triggers, including pathogens.

“Killer T cells sense their environment using cell surface receptors that act like highly sensitive fingertips, scanning for germs,” explains Dr. Cole.

“However, sometimes these sensors recognize the wrong target, and the killer T cells attack our own tissue. We, and others, have shown this is what happens during type 1 diabetes when killer T cells target and destroy beta cells.”

Once these beta cells are destroyed, insulin is no longer produced, meaning patients will require lifelong insulin therapy in order to control blood glucose levels.

Study sheds light on how killer T cells turn ‘rogue’

In their new study, the researchers suggest they may have uncovered a possible cause of type 1 diabetes, after finding that bacteria may spur killer T cells to attack beta cells.

The researchers identified a part of a bacterium that activates killer T cells, causing them to bind to beta cells and kill them.

“This finding sheds new light on how these killer T cells are turned into rogues, leading to the development of type 1 diabetes,” notes Dr. Cole.

The researchers say they hope their results will pave the way for new strategies to diagnose, prevent, and treat type 1 diabetes.

“We still have much to learn about the definitive cause of type 1 diabetes and we know that there are other genetic and environmental factors at play.

This research is significant as it pinpoints, for the first time, an external factor that can trigger T cells that have the capacity to destroy beta cells.”

As well as helping to understand what contributes to the development of type 1 diabetes, the researchers say their findings may also shed light on the causes of other autoimmune conditions.

Learn More +
Kristin-Mussar in a labcoat

Type 1 Diabetes Research Updates

We’re so grateful for everyone who donates to individual projects and our General Fund – it allows us to accomplish our vision of supporting innovative scientific inquiry until type 1 diabetes is eliminated.

To show our gratitude, it’s important to us that we keep our donors updated on the research they’ve helped fund. Scientific research can at times be an arduous process, which is why we sometimes go months without any updates. However, our researchers are constantly working to complete their research projects and are dedicated to spending every day finding innovative new ways to treat and cure diabetes.

Update: Creating New Insulin-Producing Cells To Repair Damaged Pancreas

Kristin Mussar provided the following update to her research at the end of April:

In our last update we identified a population of macrophages residing in the pancreas of newborns that was necessary for islet cells to expand in number as well as to mature into functional insulin-producing cells. Recently, we found that a functionally similar population capable of boosting islet proliferation exists in the bone marrow of adult individuals, which suggests that there might be potential for islet repair in adults. We are currently investigating whether this bone marrow population can be used as a cell therapy to enhance the repair process of islet cells in adult mouse models of injury. Additionally, we are still working to characterize the molecular signals underlying the effects that this cell population has on islet cell expansion and maturation. Thank you again for donating and making this research possible!

Visit her project page to learn more about this study.

Once again, thanks for your support in helping our mission to prevent, treat and cure type 1 diabetes. It may sound cliché, but we truly couldn’t do it without you. Stay tuned for more updates later this summer. We’re expecting to hear from Dr. Subhadra Gunawardana and Wendy Yang, in particular!

To support more innovative research project like this, click here.

Learn More +
Salk researchers Michael Downes, Ron Evans and Eiji Yoshihara. — Salk Institute

Salk Makes Step Toward Cellular Diabetes Treatment

Original article written by Bradley J. Fikes and published by The San Diego Union-Tribune on April 15, 2016. Click here to read the original article.

Salk Institute scientists say they’ve discovered a key ingredient needed to make functional insulin-producing beta cells. With that knowledge, the scientists say they can realize a dream in treating Type 1 diabetes: growing replacement beta cells from the patients themselves.

If these replacement cells can be implanted and protected, they will make insulin as the body needs, just as the original cells do. That means type 1 diabetes would, for the first time ever, be curable.

The ingredient is a protein called ERR-gamma that turns up energy production in the beta cells, said Ron Evans, a Salk researcher who co-led the study with colleague Michael Downes. These cells are made from artificial embryonic stem cells, called induced pluripotent stem cells. Typically produced from skin, these IPS cells cells are being examined for their potential to treat a variety of diseases.

The study, published Tuesday in the journal Cell Metabolism, provides more evidence that cell replacement therapy may eventually provide a cure for type 1 diabetes, caused by the destruction of beta cells through an autoimmune reaction. The study can be found atj.mp/evansbeta. The first author was Eiji Yoshihara, first author of the paper and a Salk research associate.

Type 2 diabetes is even more common than Type 1. In the United States as of 2012, about 1.25 million children and adults have type 1 diabetes, and 29.1 million had the type 2 form, according to the American Diabetes Association. In San Diego County as of 2012, about 140,600 or 6.2 percent have type 2 diabetes.

In type 2 diabetes, the body becomes resistant to insulin, and the pancreas may become disease and have trouble producing sufficient insulin. As a result, blood sugar rises beyond normal, producing all sorts of damage. This can include weight gain, heart problems, poor limb circulation leading to amputation, kidney disease and blindness. These patients may also come to require insulin.

Disease reversal

Unlike the first kind, type 2 diabetes can be reversed, at least in some cases. Dieting and exercise leading to weight loss is key, according to recent research. A 2013 study in the journal Diabetes Care found that causing patients to burn more substantially more calories than they consume, either by diet or bariatric surgery, restores insulin sensitivity over a period of 8 weeks.

Bariatric surgery, which a portion of the gut is removed to limit food absorption, appears to reverse type 2 diabetes in nearly all patients, according to other studies.

But diets are notoriously hard to adhere to, and bariatric surgery is a drastic step many people are reluctant to take. So scientists are focusing on how type 2 diabetes arises in the first place, with the hope of finding some way of preventing it from taking place at all.

A 2014 study by UCSD researchers led by Dr. Jerrold Olefsky found that a lack of oxygen in fat cells is the trigger that starts the process that ends up causing type 2 diabetes. The study, published in the journal Cell, examined the disease in mouse models, considered a good proxy for human diabetes.

It reported that certain fatty acids, especially saturated fats, increased the need for oxygen in fat cells, causing them to fall into an oxygen-deprived state. This led to inflammation, an immune reaction and insulin resistance.

If the study results are borne out in people, it may be possible to produce a drug that would stop this process in the bud. It won’t stop obesity, but the most drastic health problems would be prevented.

For type 1 diabetes, no treatment exists to reverse the disease.

A very limited form of cell replacement therapy is already used for those with the most dangerous form of type 1 diabetes. They get transplants of islet cells or pancreases from cadavers. Those treated belong to a small subset of type 1 diabetics who get no warning signs that their blood sugar has fallen too far. They can die as a result.

Cell replacement

San Diego’s ViaCyte is already testing a replacement therapy using progenitor cells derived from human embryonic stem cells. In animal testing, these cells mature into beta and other pancreatic “islet” cells.

Another approach with induced pluripotent stem cells is being researched in the lab of Harvard University researcher Douglas Melton. He and colleagues have come up with their own formula for producing beta cells, and published studies outlining the approach.
Melton’s group reports that the cells express genetic activity very similar to adult beta cells, and regulated blood sugar when transplanted into mice whose own beta cells were destroyed.

These therapies all face difficulties, the trickiest perhaps being the patient’s own immune system, which destroyed their own islet cells in the first place.

Islet and pancreatic transplant patients are given immunosuppresive drugs. These drugs are toxic and make the patients more vulnerable to infection. Therefore, these procedures are used only on type 1 diabetics at greatest risk, said Julia L. Greenstein, vice president of discovery research at the research foundation JDRF.

ViaCyte has pioneered another approach to the problem. The islet cells are encapsulated in a semipermeable membrane that keeps out the immune system, but allows nutrients to flow in, and insulin and waste products to flow out. Moreover, the islet cells may potentially produce other blood sugar-relating hormones besides insulin.

Whether that strategy works is the point of clinical testing of ViaCyte’s product, now in a Phase 1 trial. This trial tests for safety. Participants receive easily removable implants of encapsulated cells, which are expected to mature in place and produce insulin. These implants are being removed periodically and examined to make sure the maturation process is going smoothly and that the membrane remains intact.

Presumably, other stem cell-based replacement therapies such as that the Salk scientists or Melton are developing will require an immune system-blocking barrer like ViaCyte’s, to protect the cells. Meanwhile, research continues on ways to modulate the immune system of type 1 diabetes to stop the autoimmune reaction.

Power to the cells

The Salk Institute’s Evans said applying the ERR-gamma protein promotes the growth of mitochondria, the power plants of cells. This gives the cells energy to make insulin.

“It turns on the light, it turns on the energy that flows into the cell. And that we think is the missing link,” Evans said. “It is a switch that controls mitochondrial numbers and activity. You really rev up the power of the cell. Instead of having a weak or indolent cell, you rev it up to the level that it needs to be able to release insulin in response to glucose. And that takes a lot of energy.”

In mouse models, the effect of the therapy is immediate, he said.

“The day that we implant them, the diabetes starts going away,” Evans said. “These cells, you can purify them in a dish. You can grow them exactly the way you want, to hundreds of millions of cells that all share common features. For human therapy, you need that.”

Further research may enable production of different islet cells that make other important hormones to regulate blood sugar, Evans said. And a few more years of testing and preclinical development, it should be possible to test the therapy in humans.

Learn More +
Diabetes Supplies - Bottles

Consequences and Burdens of Type 1 Diabetes in Low-Income and Middle-Income Countries

Diabetes is a global epidemic. Just consider the following from the World Health Organization’s fact sheet on diabetes:

-In 2014 the global prevalence of diabetes was estimated to be 9% among adults aged 18+ years
-In 2012, an estimated 1.5 million deaths were directly caused by diabetes
-More than 80% of diabetes deaths occur in low- and middle-income countries
-WHO projects that diabetes will be the 7th leading cause of death in 2030

Most everyone in the U.S. has likely felt the burden of diabetes in one way or the other, but in low and middle income, the burden of diabetes is felt even more strongly, as poor access to health services is coupled with a lack of primary health care education.

A Lack of Money to Treat Diabetes

Though insulin was discovered 95 years ago, children and young people across the world still suffer or die from preventable complications because of a lack of insulin. This is due to limited access to insulin globally, particularly in many parts of the developing world. What’s more, even when insulin is available, many families struggle with the cost of insulin and test strips because the cost is so disproportionate to their average monthly income. As of 2012, 12.7% of people across the world live on less than $2 a day. With an income this limited, many of those afflicted with type 1 diabetes simply can’t afford the medicine they need every day. With around 78,000 children under 15 being diagnosed with type 1 diabetes each year, the demand for insulin is only increasing.

A Lack of Type 1 Diabetes Education

In addition to poor access to medical supplies in low-income and middle-income countries, education on living with diabetes is severely lacking in developing countries. Without adequate diabetes education and support, living a full, productive and healthy life with diabetes can be nearly impossible. Even with access to insulin, not knowing how to properly manage your diabetes has severe health repercussions.
What’s more, myths about diabetes abound in many developing nations. A study in India, which has the largest number of patients with diabetes and is known as the “Diabetes capital of the world,” found that nearly half of adult patients surveyed believed that diabetes can be cured by herbal treatment and that bitter foods reduce the elevated blood sugar levels. Misconceptions and myths such as these result from insufficient education and awareness about type 1 diabetes, and only serve to increase the economic and public health burdens of diabetes in low-income and middle-income countries.

The Cyclical Challenges of Diabetes

To make matters worse, the problems of diabetes globally aren’t solely a lack of medication and healthcare. Rather, it becomes cyclical, creating a challenge to not just thrive, but survive.

Consider the child who has diabetes but has inadequate access to insulin and test strips, leading to recurring bouts of diabetic ketoacidosis. Because of this, he can’t attend school regularly. By the time he reaches adulthood, his education is severely lacking. This affects his ability to get a job that pays enough to cover the cost of supplies to manage his diabetes in adulthood. In addition to not being able to afford the medical supplies he needs, his lower level of education means that he’s statistically more likely to believe common myths and misconceptions regarding diabetes, making it even harder to manage.

Ultimately, living with diabetes presents unique challenges no matter where you live, but living with type 1 diabetes in low-income and middle-income countries can significantly exacerbate these challenges. This is why the Diabetes Research Connection has made it our mission to support innovative scientific inquiry until diabetes is eliminated across the globe.

To get involved in the global fight against type 1 diabetes, support one of our diabetes research projects.

Learn More +
Type 1 Diabetes Researchers

How to Get Involved in the Global Fight Against Diabetes

The Diabetes Research Connection’s mission is to connect donors with early-career scientists, enabling them to perform peer-reviewed, novel research designed to prevent and cure type 1 diabetes, minimize its complications and improve the quality of life for those living with the disease.

April 7 is World Health Day 2016, and this year’s theme is “beat diabetes”. In recognition of this, we invite you to join us in the global fight against diabetes. Read on to learn about a few ways you can get involved.

Support early-career scientists’ research.

We’ve made it easy for donors and strong proponents of type 1 diabetes research to help fund young scientists with exciting and inventive research project ideas. Currently, we’re raising money to fund two projects. Joseph Lancman, Ph.D., of Sanford Burnham Prebys Medical Discovery Institute, is researching ways to replace insulin producing beta-cells, allowing recipients to live a life free of daily insulin injections, while Sangeeta Dhawan, Ph.D., of UCLA’s School of Medicine, is researching how to create better insulin producing cells with cell regeneration. When you support one or more of these projects, 100% of your contribution goes directly to the scientists.

Submit research project ideas or refer early-career scientists to the Diabetes Research Connection.

Have an innovative idea for a type 1 diabetes research project? We can help you get it funded by facilitating the connection between donors and scientists.

Graduate students, post-docs, instructors and nontenured junior faculty whose work is focused on type 1 diabetes are invited to apply. Grants are up to $50,000 for one year, and scientists receive 100% of what they raise.

Serve on a peer-review committee.

If you’d like to get more deeply involved in the fight to beat type 1 diabetes, consider serving on one of our committees. Our Scientific Review Committee consists of more than 80 diabetes experts from across the country who volunteer their time and expertise to vet each research project we work with for novelty and scientific merit. Our Layperson Review Committees help scientists translate complex and jargon-heavy descriptions into simple and engaging website presentations that donors are likely to fund.

Learn more about serving on a committee here.

Engage online with social media.

Help raise awareness of the research currently being done to cure type 1 diabetes by joining us online. Follow us on Facebook, Twitter, LinkedIn and Instagram, and help us reach even more people by liking and sharing our posts.

Learn More +
Protein Sheild

Protein That Repels Immune Cells Protects Transplanted Pancreatic Islets From Rejection

Protein SheildTransplanting islets encapsulated with CXCL12 restores blood sugar control without immunosuppression in animal models of diabetes

An approach developed by Massachusetts General Hospital (MGH) investigators may provide a solution to the limitations that have kept pancreatic islet transplantation from meeting its promise as a cure for type 1 diabetes. In the March issue of the American Journal of Transplantation, the research team reports that encapsulating insulin-producing islets in gel capsules infused with a protein that repels key immune cells protected islets from attack by the recipient’s immune system without the need for immunosuppressive drugs, restoring long-term blood sugar control in mouse models. The technique was effective both for islets from unrelated mice and for islets harvested from pigs.

“Protecting donor islets from the recipient’s immune system is the next big hurdle toward making islet transplantation a true cure for type 1 diabetes,” says Mark Poznansky, MD, PhD, director of the MGH Vaccine and Immunotherapy Center, who led the study. “The first was generating enough insulin-producing islets, which has been addressed by several groups using pig islets or – as announced last fall by Doug Melton’s team at the Harvard Stem Cell Institute – with islet cells derived from human stem cells. Now our technology provides a way to protect islets or other stem-cell-derived insulin-producing cells from being destroyed as soon as they are implanted into a diabetic individual without the need for high-intensity immunosuppression, which has its own serious side effects.”

While transplantation of pancreatic islets has been investigated for several decades as a treatment and potential cure for type 1 diabetes, its success has been limited. Along with the risk of rejection that accompanies all organ transplants – a risk that is even greater for cross-species transplants – donated islets are subject to the same autoimmune damage that produced diabetes in the first place. The immunosuppressive drugs used to prevent organ rejection significantly increase the risk of infections and some cancers, and they also can contribute directly to damaging the islets. Among the strategies investigated to protect transplanted islets are enclosing them in gel capsules and manipulating the immune environment around the implant. The MGH-developed approach includes aspects of both approaches.

Previous research from the MGH team demonstrated that elevated expression of a chemokine – a protein that induces the movement of other cells – called CXCL12 repels the effector T cells responsible for the rejection of foreign tissue while attracting and retaining regulatory T cells that suppress the immune response. For the current study they investigated how either coating islets with CXCL12 or enclosing them in CXCL12 gel capsules would protect islets transplanted into several different mouse models.

Their experiments revealed that islets from nondiabetic mice, either coated with CXCL12 or encapsulated in a CXCL12-containing gel, survived and restored long-term blood sugar control after transplantation into mice with diabetes that was either genetically determined or experimentally induced. CXCL12-encapsulated islets were even protected against rejection by recipient animals previously exposed to tissue genetically identical to that of the donor, which usually would sensitize the immune system against donor tissue. CXCL12-encapsulated pig islets successfully restored blood sugar control in diabetic mice without being rejected. The ability of CXCL12 – either as a coating or encapsulating gel – to repel effector T cells and attract regulatory T cells was also confirmed.

“While studying this procedure in larger animals is an essential next step, which is currently underway with the support of the Juvenile Diabetes Research Foundation, we expect that this relatively simple procedure could be readily translatable into clinical practice when combined with technologies such as stem-cell-derived islets or other insulin-producing cells and advanced encapsulation devices,” says Poznansky, an associate professor of Medicine at Harvard Medical School. “We also hope that CXCL12 will have a role in protecting other transplanted organs, tissues and cells as well as implantable devices, a possibility we are actively investigating.”

http://www.medicalnewstoday.com/releases/289590.php?tw

 

Learn More +
israeli implant

Beta-O2 Testing Cure For Type 1 Diabetes

israeli implantImagine if those with type 1 diabetes no longer had to worry about insulin injections.

Posted By Abigail Klein Leichman On November 17, 2014 @ 6:00 am

The ßAir bio-artificial pancreas, developed by Israel’s Beta-O2, was recently implanted in the first of eight diabetes patients in Sweden as part of a $1 million pilot human study on this groundbreaking treatment and potential cure for type 1 diabetes (T1D).

Chairman of the Board Dan Gelvan tells ISRAEL21c that the advanced implantable system is science-fiction-come-true for people with T1D, an autoimmune disorder — also known as insulin-dependent or juvenile diabetes – in which the immune system destroys the insulin-producing islet cells of the pancreas.

T1D patients (about three million people in the United States alone) must monitor their glucose and take insulin daily to do the essential job of converting sugar, starches and other food into energy – a task normally handled by about two grams of islet cells.

“Imagine if those with type 1 diabetes no longer had to worry about insulin injections or glucose levels. They could eat what they wanted, exercise as they wished and need not measure every step they took,” says Gelvan, also managing director of life sciences at Aurum Ventures, the company’s lead investor. “This is the future that Beta-O2 envisions ßAir will help to create.”

Oxygen makes the difference

The technique of transplanting cadaver islet cells into T1D patients has been practiced for nearly 30 years, Gelvan notes. However, patients must take immunosuppressant drugs for the rest of their lives. To get around this problem, several companies have developed encapsulation techniques that protect the transplanted cells from the immune reaction to foreign matter.

Beta-O2’s encapsulation has an added, unique feature that addresses the remaining problem: getting enough oxygen into the encapsulated cells.

“Islet cells are huge consumers of oxygen. If they don’t get enough, they won’t produce enough insulin,” Gelvan says. “This company has taken an engineering approach to finding a way to make sure there is an active supply of oxygen to the transplanted cells.”

People with the ßAir would need to refill the air in the tiny device via a replenishing system with a dedicated injector, once every 24 hours.

This device delivers the needed amount of oxygen to the implant.

“Ensuring consistent supply of oxygen has been a challenge of many encapsulation systems in the past,” according to Albert Hwa, senior program scientist in the Beta Cell Therapies Program of theJDRF, which awarded a $500,000 grant toward the pilot study.

“Beta-O2 has demonstrated their device can provide long-term immune protection of islet cells in several animal models, and the addition of oxygen helps keep the cells alive and functional, all in the absence of immunosuppression.”

Mimicking the pancreas

In 2012, ßAir was implanted in a 63-year-old patient in Germany and monitored for 10 months. A report on the promising results was published  in the journal PNAS last year.

The present two-year pilot study, which will enroll eight participants at Uppsala University Hospital in Sweden, will evaluate the safety, survival and function of Beta-O2’s implanted system.

Dr. Per-Ola Carlsson, principal investigator of the ßAir study, said the first implant procedure took less than an hour. “The patient remained hospitalized for four days thereafter for observation and was then discharged. Until day 180 following implantation, the patient will, among other protocol duties, be required to return to the clinic for monthly check-ups. On day 181, ßAir will be explanted from the patient, who will continue to be followed for another 180 days.”

Because cadaver islet cells are not easy to obtain, Gelvan says the company intends to experiment with human stem cells provided by partners companies, as well as animal-derived cells.

“We can do this because the encapsulated islets are immune protected,” he stressed.

As for the lifespan of the implant, he adds: “We don’t know yet how long it lasts, but conventional islet transplants continue to function well for eight to nine years. We hope that because we’ve created a protected microenvironment fed by oxygen, it will last even longer.”

Hwa tells ISRAEL21c that if this proof of concept is successful, “we can envision using other types of islet cells in the device, and perhaps engineering an automated oxygen supply within the device.”

Gelvan explains that ßAir is entirely different than “artificial pancreas” devices that automate glucose monitoring and insulin injection, such as the Israeli product MD Logic developed at Schneider Children’s Medical Center.

“Ours is a biological device that is meant to restore the original effect of having islet cells, so you have all elements of a functioning pancreas in response to the body’s varying glucose levels,” he says. “We are actually simulating and emulating the functionality of an organ.”

The idea for the novel implant system originated with Dr. Pnina Vardi, director of the Laboratory for Diabetes & Obesity Research at Tel Aviv University. Starting in 2004, she did the initial development along with islets researcher Dr. Konstantin Bloch and serial medical-device inventor Yossi Gross. The company, based in Rosh Ha’Ayin near Tel Aviv, now is run by a professional management group.

For more information, click here.

 

Article printed from ISRAEL21c: http://www.israel21c.org

URL to article: http://www.israel21c.org/headlines/beta-o2-testing-cure-for-type-1-diabe…

 

Learn More +

Unlimited access to all the essential project updates latest diabetes research news, and more.