DRC & Research News

This page shares the latest news in T1D research and DRC’s community.

Get the most recent diabetes research news, delivered straight to your inbox

DRC-Funded Scientist Creates New Insulin-Producing Cells to Fight Type 1 Diabetes

Thanks in part to funding from the Diabetes Research Connection (DRC), Dr. Kristin Mussar was able to conduct an in-depth study regarding how to stimulate the body’s own cells to create new insulin-producing cells that may help treat type 1 diabetes (T1D). In individuals with T1D, the immune system attacks insulin-producing cells, destroying them and leaving the body unable to effectively regulate blood sugar.

The human body is filled with myeloid cells that all differentiate to help grow, maintain, and repair various organs. When these cells are depleted, it impacts organ health. For instance, lack of insulin-producing cells results in diabetes. However, Dr. Mussar and her team discovered that there is a population of macrophages – white blood cells that recirculate throughout the body constantly monitoring the health status of all tissues – that instruct insulin-producing cells to grow in the perinatal stage of pancreas development. During this period of prolific growth, enough insulin-producing cells are created to support glucose homeostasis throughout one’s life.

Dr. Mussar found that there is a special population of these cells that act as cargos of potent growth factors for the insulin-producing cells in the pancreas. If these cells are prevented from entering the pancreas, the growth of insulin-producing cells is arrested and diabetes ensues. This lack of cell growth, as well as cell destruction, are issues that researchers have been trying to remedy through various strategies for treating T1D.

One avenue of treatment that is being explored is finding ways to use the body’s own cells and processes to support insulin production. Current challenges in treatment include the constant monitoring and accurate dosing of insulin, as well as the use of immunosuppressants or other medications to prevent the body from destroying modified cells or specialized therapies. Using the body’s own cells can help reduce risk of immune attack or rejection.

To this effect, Dr. Mussar’s research revealed that there are precursors to these special macrophages that exist within the bone marrow of adults. When these precursors are injected into the blood stream, they are able to signal growth of insulin-producing cells. This discovery raises hopes that, by dispatching these pro-regenerative cells from the bone marrow to injured pancreatic islets, it may be possible to enhance regeneration of insulin-producing cells in individuals with type 1 diabetes. This may in turn help to stabilize blood sugar naturally using the body’s own cells.

The Diabetes Research Connection is proud to have played a role in making Dr. Mussar’s research possible by providing funding that enabled her to continue moving forward with her project and eventually get the results published in the Journal of Clinical Investigation.

Learn More +

How to Honor National Diabetes Month

Diabetes affects more than 29 million Americans and is the 7th leading cause of death in the US today. While Diabetes Research Connection fights to find a cure for type 1 diabetes every month, we give an extra push during the month of November for National Diabetes Month. There are many ways you can contribute during National Diabetes Month, including our Double Your Dollars campaign, shopping with AmazonSmile, volunteering at a hospital or research center or participating in a walk/run benefiting diabetes. Read below for more details on how you can get involved.

Make Your Donation Count Twice As Much With Double Your Dollars

In honor of National Diabetes Month, DRC is matching every dollar donated to the General Fund (up to $50,000) between now and November 30 through our Double Your Dollars campaign. It is the perfect time to make a difference in the T1D community by donating to our campaign and making your charitable act go twice as far.

Every donation helps early-career scientists launch their ideas and allows 100% of funds directed for T1D research to go directly to the researcher’s laboratory. Donations are critical for us to operate our innovative platform, even though DRC’s operating costs are kept less than 10% of gross revenue.

Make a Difference While Shopping on Amazon

November is the month where most of us start our holiday shopping- the excitement of the good deals of Black Friday and Cyber Monday are almost too much to bear. If the crowds and late hours of Black Friday intimidate and overwhelm you and Cyber Monday is more your speed, try using AmazonSmile to accommodate all your holiday shopping needs. AmazonSmile is Amazon’s nonprofit charitable support arm and allows the shopper to choose from a variety of charities who will benefit monetarily from their purchases, without any additional cost to the shopper.

To honor National Diabetes Month, you can do your holiday shopping through AmazonSmile and select Diabetes Research Connection as your charity of choice so that a portion of your purchase goes to finding a cure for those with T1D. Visit smile.amazon.com to get started.

Participate in a Walk or Run

A great way to get involved with the fight to find a cure for T1D and honor National Diabetes Month is to participate in a walk/run benefiting diabetes. Not only would it be benefitting a great cause, but doing a walk/run is a great way to be active with a big group of people. There are many options available depending on what area you live, so it helps to do some research to find one that suits your fitness level needs.

Volunteer at a Hospital or Research Center

It’s very easy to find places that need volunteers, such as hospitals or research centers. Not only is it a good time of year to donate your time because of the holiday giving season, but also because of National Diabetes Month- you can opt for a research center or a hospital that specializes in T1D. This is the perfect way to give back for those who can’t donate money.

For more information on how you can get involved in the fight to find a cure for T1D, and to receive frequent updates about DRC, sign up for our newsletter!

Learn More +

Diabetic-Friendly Fall and Halloween Treats

The air is cool and crisp, the leaves are beginning to turn and we’re already halfway into October – fall is in full force!

With fall comes many great seasonal foods and treats – pumpkin pies, apple cider and halloween candy, to name a few. However, we know that with so many delicious treats available, it can be hard to choose the right foods to help manage your T1D, or to decide what to offer to your friends or family member with T1D.

Below we’ve rounded up our favorite diabetes-friendly treats and recipes for this season.

No Tricks, Just Treats for Those with T1D

Struggling to decide what to pass out to the adorable little ghosts and goblins who will be knocking on your door at the end of the month? T1D-friendly candies are a great option – in addition to being ideal for your diabetic neighbors, they tend to be healthier for kids in general, something every parent will appreciate.

Diabetic Living suggests offering some of the following T1D-friendly candy to your trick-or-treaters:

  • Fun-sized candy bars generally contain less sugar. Consider offering Kit Kat bars – these wafer-based chocolates have only 7 g sugar, 70 calories, 4 g fat and 9 g carb.
  • Almond M&Ms are a healthier choice than regular M&Ms, as the heart-healthy nut displaces some of the sugar-dense chocolate. One snack size bag will only set you back 10 g sugar, 110 calories, 6 g fat, 2 g saturated fat and 12 g carb.
  • Dark Chocolate contains heart-healthy antioxidants, but some dark chocolates are better than others. The nuggets of Hershey’s Special Dark with Almonds Nuggets contains only 12 g sugar, 150 calories and 15 g carb.
  • Strawberry Twizzler Twists are the perfect combination of chewy, fruity and sweet. One twist contains 5 g sugar, 40 calories, 0 g fat and 9 g carb.
  • Jolly Ranchers are a great choice as far as hard candies go. Three pieces of these long-lasting sweet and sour treats will set you back 11 g sugar, 70 calories and 17 g carb.
  • Chocolate and Peanut Butter Treats are a classic at Halloween and year-round. Sugar-Free Reese’s Peanut Butter Cups are a great option, as four treats contain 145 calories, 22 g carb and no sugar.

Delicious Fall Treats for Those With T1D and Those Without

As you’re gearing up for your next bonfire, football watch party, halloween party or other fall-themed gathering, consider bringing a delicious, diabetes-friendly fall dish.

If you’re responsible for bringing finger-foods, consider these fresh, healthy Touchdown Tortilla Wraps.

Recipe: Touchdown Tortilla Wraps

Taken from Diabetic Living.

touchdown tortilla wrap

[su_spoiler title=”View recipe for Touchdown Tortilla Wraps”]

Ingredients

  • 3 7- or 8-inch flour tortillas
  • 1/2 8-ounce tub light cream cheese with chive and onion or roasted garlic
  • 18 – 24 fresh basil leaves
  • 1/2 7-ounce jar roasted red sweet peppers, well drained and cut into 1/4-inch-wide strips
  • 4 ounces thinly sliced cooked roast beef, ham, and/or turkey
  • 1 tablespoon low-fat mayonnaise dressing or light salad dressing

Directions

  1. Spread each tortilla with one-third of the cream cheese. Cover cream cheese with a layer of basil leaves, leaving a 1-inch border. Arrange roasted red peppers on basil leaves. Top with sliced meat. Divide mayonnaise among tortillas, spreading over meat.
  2. Roll up each tortilla tightly into a spiral. Cut each tortilla roll in half crosswise. Wrap in plastic wrap; chill for up to 4 hours. Tote in an insulated cooler with ice packs. Makes 6 servings.

Nutrition Facts Per Serving:

Servings Per Recipe: 6
Per Serving: 135 cal., 6 g total fat (3 g sat. fat), 24 mg chol., 186 mg sodium, 10 g carb. (1 g fiber, 2 g sugars), 8 g pro.
Diabetic Exchanges

Fat (d.e): 0.5; Lean Meat (d.e): 1; Starch (d.e): 0.5

[/su_spoiler]

When it comes time for a T1D-friendly dessert, we suggest this delicious no-bake pumpkin cheesecake.

Recipe: No-Bake Pumpkin Cheesecake

Taken from Diabetic Living.

pumpkin cheesecake

[su_spoiler title=”View recipe for No-Bake Pumpkin Cheesecake”]

Ingredients

  • 1 recipe Graham Cracker Crust (see recipe below)
  • 1 envelope unflavored gelatin
  • 1/4 cup water
  • 1 1/2 8 ounce tub light cream cheese
  • 1 15-ounce can pumpkin
  • 2 tablespoons sugar or sugar substitute* equivalent to 2 tablespoons sugar
  • 1 teaspoon ground cinnamon
  • 3/4 of an 8-ounce container frozen light whipped dessert topping, thawed
  • Frozen light whipped dessert topping, thawed (optional)
  • Ground cinnamon, chopped toasted pecans, and/or pomegranate seeds** (optional)

Directions

  1. Prepare graham cracker crust (see below); set aside. In a small saucepan, stir together gelatin and the water; let stand for 5 minutes to soften. Cook and stir over low heat until gelatin dissolves; set aside to cool slightly.
  2. In a large bowl, beat cream cheese with an electric mixer on medium speed until smooth. Add pumpkin, sugar, the 1 teaspoon cinnamon, and the gelatin mixture; beat until well mixed. Fold in the three-quarters container of dessert topping. Spread mixture into crust in springform pan. Cover and refrigerate for 4 to 24 hours or until set.
  3. Using a thin metal spatula or table knife, loosen the cheesecake from the side of the springform pan. If desired, use a wide spatula to remove cheesecake from bottom of pan and place on a serving plate. Cut into wedges to serve. If desired, top with additional whipped topping and garnish with additional cinnamon, chopped pecans, and/or pomegranate seeds**. Makes 14 servings.

Tip

  • *Sugar Substitutes: Choose from Splenda® Granular, Equal® Spoonful or packets, or Sweet ‘N Low® bulk or packets. Follow package directions to use product amount equivalent to 2 tablespoons sugar for both crust and filling.
  • *Sugar Substitutes: PER SERVING WITH SUBSTITUTE: same as above, except 136 cal., 11 g carb.
  • **Test Kitchen Tip: To remove the seeds from a pomegranate, cut the pomegranate in half through the skin. Remove the peel and break the fruit into sections. Then separate the seeds from the membrane.
  • Tip: To toast nuts, spread in a shallow baking pan lined with parchment paper. Bake in a 350 degrees F oven for 5 to 10 minutes or until golden, shaking pan once or twice.

Graham Cracker Crust: Ingredients

  • 3/4 cup finely crushed graham crackers,
  • 3 tablespoons canola oil
  • 2 tablespoons sugar or sugar substitute* equivalent to 2 tablespoons sugar

Directions

Preheat oven to 350 degrees F. In a small bowl, combine crushed graham crackers, canola oil, and sugar. Mix well. Spread evenly in bottom of an 8- or 9-inch springform pan; press firmly onto bottom. Bake for 5 minutes. Cool on a wire rack.

Nutrition Facts Per Serving:

Servings Per Recipe: 14
PER SERVING: 150 cal., 8 g total fat (4 g sat. fat), 11 mg chol., 144 mg sodium, 14 g carb. (1 g fiber), 5 g pro.

Diabetic Exchanges

Other Carb (d.e): 1; Fat (d.e): 1.5

[/su_spoiler]

For more T1D-friendly recipes and foods, subscribe to our monthly newsletter.

Learn More +
diabetic dog

Type 1 Diabetes and Diabetic Alert Dogs

Dogs are often called a man’s best friend – but for some, this common phrase has a much deeper meaning.

Groups like Canine Hope for Diabetics and Diabetic Alert Dogs of America help type 1 diabetics safely gain independence through training and providing working service dogs. These Diabetic Alert Dogs are trained to pick up on low (hypoglycemia) or high (hyperglycemia) blood sugar events and alert their owners before it becomes dangerous. These dogs are able to detect the chemical change produced by blood sugar high and lows and alert their owners so they can take steps to return their blood sugar to normal levels and avoid a diabetic emergency.

How Diabetic Alert Dogs Make Life Easier for Those With T1D

To get a glimpse of just how much of a difference these dogs make for adults and children with T1D, consider Luke’s story. Luke was diagnosed with T1D at just two years old. His mom took him to the doctor after noticing he was tired, thirsty and irritable, and a fingerprick confirmed that he had T1D. The doctor sent Luke straight to the hospital, where his mom began to learn how to take care of him with the new diagnosis: how to prick his finger, how to check his blood sugar and how to administer insulin.

So why did Luke need a Diabetic Alert Dog? He is hypoglycemic unaware, which means that he can’t tell when his blood sugar is getting too low. Diabetic Alert Dogs are trained to notice when blood sugar gets too low and notify their owners. Getting a dog would give Luke more independence; he’d be able to play sports, go to friends’ houses and be a “normal” kid again.

Luke received Jedi, a Diabetic Alert Dog who has saved his life many, many times. Jedi knows when Luke’s blood sugar gets too low, and alerts him and his mom so that they can take the necessary steps to correct his blood sugar. Just recently, at a Friends for Life conference, Jedi alerted Luke’s mom twice while he was playing with other children with type 1 diabetes. Luke was too low the first time and too high the second time.

It’s not just Luke benefitting from from having a Diabetic Alert Dog, either. Many children and adults with T1D have dogs that warn them of extreme blood sugar fluctuations, often saving their lives.

If you have T1D and are interested in learning more about Diabetic Alert Dogs, we encourage you to contact Canine Hope for Diabetics, Diabetic Alert Dogs of America or a similar group that trains alert dogs for diabetics.

For more information, news updates and resources for type 1 diabetics, sign up for our newsletter.

Learn More +
diabetes infographic preview

What Are The Types of Diabetes? [INFOGRAPHIC]

The term “diabetes” refers to a group of diseases that result in problems with blood sugar levels. Each type of diabetes has a different root cause.

View the infographic below to learn more about the different types of diabetes, including who they affect, their cause and typical treatment.

For more information about type 1 diabetes, check out our resource center.

DRC-Infographic

Note: T1D is diagnosed in children, young adults and adults.

Learn More +

Research suggests that diabetes could be due to failure of beta cell ‘hubs’

Original article published by University of Birmingham on July 21, 2016. Click here to read the original article.

The significant role of beta cell ‘hubs’ in the pancreas has been demonstrated for the first time, suggesting that diabetes may due to the failure of a privileged few cells, rather than the behaviour of all cells.

Researchers used optogenetic and photopharmacological targeting to precisely map the role of the cells required for the secretion of insulin.

The team believe that the findings, published in Cell Metabolism, could pave the way for therapies that target the ‘hubs’.

Dr David Hodson, from the University of Birmingham, explained, “It has long been suspected that ‘not all cells are equal’ when it comes to insulin secretion. These findings provide a revised blueprint for how our pancreatic islets function, whereby these hubs dictate the behaviour of other cells in response to glucose.”

According to the NHS, there are currently 3.9 million people living with diabetes in the UK, with 90% of those affected having type 2 diabetes.

Type 2 diabetes occurs when the pancreas fails to produce enough insulin to function properly, meaning that glucose stays in the blood rather than being converted into energy.

Beta cells (β cells) make up around 65-80% of the cells in the islets of the pancreas. Their primary function is to store and release insulin and, when functioning correctly, can respond quickly to fluctuations in blood glucose concentrations by secreting some of their stored insulin.

These findings show that just 1-10% of beta cells control islet responses to glucose.

Dr Hodson, who is supported by Diabetes UK RD Lawrence and EFSD/Novo Nordisk Rising Star Fellowships, continued, “These specialised beta cells appear to serve as pacemakers for insulin secretion. We found that when their activity was silenced, islets were no longer able to properly respond to glucose. “

Prof Guy Rutter, who co-led the study at Imperial College London, added “This study is interesting as it suggests that failure of a handful of cells may lead to diabetes”.

Studies were conducted on islet samples from both murine and human models.

The team noted that, though the findings present a significant step forward in understanding the cell mechanisms, the experiments therefore may not be reflected in vivo, where blood flow direction and other molecule dynamics may influence the role of the hubs and insulin secretion.

Learn More +
Measuring blood sugar

Artificial Pancreas Protocol Deemed Feasible for Younger Kids

Original article published by HealthDay News on May 12, 2016. Click here to read the original article.

Artificial pancreas linked to three-fold reduction of time-in-hypoglycemia for 5- to 9-year-olds

THURSDAY, May 12, 2016 (HealthDay News) — A child-specific version of the modular model predictive control (MMPC) algorithm is feasible and safe for 5- to 9-year-old children with type 1 diabetes, according to the first outpatient single-hormone artificial pancreas (AP) trial in a population of this age, published online May 10 inDiabetes Care.

Simone Del Favero, Ph.D., from the University of Padua in Italy, and colleagues conducted an open-label, randomized, crossover trial involving 30 children, aged 5 to 9 years, with type 1 diabetes. The authors compared three days with an AP with three days of parent-managed sensor-augmented pump (SAP).

The researchers observed a reduction in overnight time-in-hypoglycemia with the AP versus the SAP (median, 0.0 versus 2.2 percent; P = 0.002), with no significant change of time-in-target (56.0 and 59.7 percent, respectively; P = 0.430); there was an increase in mean glucose (173 versus 150 mg/dL; P = 0.002). The AP was associated with a three-fold reduction of time-in-hypoglycemia (P < 0.001) at a cost of reduced time-in-target (P = 0.022) and increased mean glucose (P < 0.001).

“This trial, the first outpatient single-hormone AP trial in a population of this age, shows feasibility and safety of MMPC in young children,” the authors write. “Algorithm retuning will be performed to improve efficacy.”

Several authors disclosed financial ties to pharmaceutical and medical device companies, several of which provided equipment for the study.

Learn More +
Islet transplantation requires immunosuppressive drugs be taken for the rest of a person's life, though improving the body's ability to manage glucose levels significantly lowers the risk for adverse health events. islet transportation Andrey_Popov/Shutterstock

Islet Transplantation May Correct Type 1 Diabetes, Study says

Original article written by Stephen Feller and published by United Press International on April 26, 2016. Click here to read the original article.

WASHINGTON, April 18 (UPI) — Transplants of islet cells, the cells responsible for producing insulin in the pancreas, helped people with type 1 diabetes establish near-normal control of their glucose levels, get free of hypoglycemic events and in many cases no longer need insulin therapy.

Just under 90 percent of patients receiving islet cell transplants in a National Institutes of Health-sponsored clinical trial showed significant improvement in management of their condition during the course of a year, inching researchers closer to a cure for the genetically-caused disease.

Type 1 diabetes is an autoimmune disorder, in which the immune system attacks islet cells, preventing the release of insulin, making it difficult for the body to break down sugars for use, storage or excretion.

The clinical trial, spearheaded by the Clinical Islet Transplantation Consortium, announced in September that the first patient in the study no longer needed insulin therapy.

With results from the rest of the phase 3 trial in hand, the researchers said they will look to license technology to manufacture purified human pancreatic islets for mass use, while also continuing studies on the safety and efficacy with varied groups of patients.

“For people unable to safely control type 1 diabetes, islet transplantation offers real hope for preventing severe, life-threatening hypoglycemia,” Dr. Tom Eggerman, a researcher at the National Institute of Diabetes and Digestive and Kidney Diseases, said in a press release.

For the study, published in the journal Diabetes Care, researchers recruited 48 patients at eight university medical centers around the United States.

All patients received purified islet cells from deceased human donors, with each participant given the transplant into the portal vein, which carries blood from the intestine to the liver. Each of the patients was also given immunosuppressive drugs to prevent their immune systems from rejecting the cells.

After one year, 87.5 percent of participants had no hypoglycemic events, near-normal control of glucose and better awareness of their condition. After one year, 52 percent of patients no longer needed insulin therapy.

Of patients who did not see results within 75 days — they still needed insulin treatments — 25 patients received a second transplant, and one patient received a third.

The researchers worked with the U.S. Food and Drug Administration to run the trialwith future plans for mass manufacture in mind, potentially speeding up the approval process.

“The findings suggest that for people who continue to have life-altering severe hypoglycemia despite optimal medical management, islet transplantation offers a potentially lifesaving treatment that in the majority of cases eliminates severe hypoglycemic events while conferring excellent control of blood sugar,” said Dr.Anthony Fauci, director of the National Institute of Allergy and Infectious Diseases.

Learn More +

Can Eye Screening for Diabetic Kids Be Delayed a Bit?

Original article written by Robert Preidt via HealthDay News on September 9, 2015. Click here to read the original article.

Children with type 1 diabetes may not need to start screening for eye disease as early as currently recommended, a new study suggests.Can Eye Screening for Diabetic Kids Be Delayed a Bit?

Most children with type 1 diabetes probably don’t need a yearly exam for diabetes-related eye disease (diabetic retinopathy) until age 15, or 5 years after their diabetes diagnosis, whichever is later, the study authors reported online Sept. 1 in the journal Ophthalmology.

“Many of our young patients with diabetes diligently come in every year for screenings that consistently show no sign of the disease,” study co-author Dr. Gil Binenbaum, attending surgeon in the ophthalmology division at The Children’s Hospital of Philadelphia, said in a journal news release.

“Of course, that’s good news for them, and it is very important to have annual eye exams once the risk of vision loss develops. But, is it worth the burden on the family and the health care system if evidence shows that diabetic retinopathy doesn’t reach a treatable stage until years later?”

Early detection and treatment of diabetic retinopathy reduces vision loss in adults, the researchers said. Some medical groups currently recommend that screening start at age 9, or three to five years after a type 1 diabetes diagnosis.

But, this study found no evidence of diabetic retinopathy in 370 children who had at least one screening. And, that was true regardless of how long they had diabetes. It was also true whether their blood sugar levels were well controlled or not, the research showed. The children were all 18 or younger, and had type 1 or type 2 diabetes.

Children with type 2 diabetes and those at high risk for diabetic complications should begin screening as soon as they are diagnosed with diabetes, the study authors said. Many people with type 2 diabetes live with uncontrolled disease before they are diagnosed, the researchers explained.

Diabetic retinopathy is the leading cause of blindness among working-age Americans, according to the U.S. National Eye Institute (NEI). The eye disease affects nearly 8 million people in the United States, the NEI said.

More information

The U.S. National Eye Institute has more about diabetic retinopathy.

SOURCE: Ophthalmology, news release, Sept. 1, 2015

Learn More +
Antibodies in the blood effect Diabetes

Early Signs in Young Children Predict Type 1 Diabetes

New research shows that it is possible to predict the development of type 1 diabetes. By measuring the presence of autoantibodies in the blood, it is possible to detect whether the immune system has begun to break down the body’s own insulin cells.

“In the TEDDY study we have found that autoantibodies often appear during the first few years of life,” said Professor Åke Lernmark from Lund University, who is leading the study in Sweden.

The TEDDY study, funded by the US National Institutes of Health (NIH), involves 8 600 children from Sweden, the US, Germany and Finland. The children have an increased hereditary risk of type 1 diabetes, detected at birth through tests on blood from the umbilical cord. TEDDY stands for “The Environmental Determinants of Diabetes in the Young.”

Antibodies are part of the body’s immune system and the presence of antibodies in the blood is a sign that the immune system has reacted to an intruder such as a virus or a bacteria. Sometimes, the immune system mutinies and attacks the body. Autoantibodies are a sign of an autoimmune disease and form markers indicating that an attack is underway, for example on the body’s own insulin cells.

The new findings from the TEDDY study have been published in the journal Diabetologia and show that there are three ways to predict the development of type 1 diabetes.

Three ways to predict development of type 1 diabetes:

1. If the autoantibody first discovered attacks insulin (IAA) In Sweden this usually takes place at the age of 18 months. However, in the study as a whole most babies affected were less than a year old.

“If a second autoantibody is detected later, then the person will get diabetes — but it may take up to 20 years,” said Åke Lernmark.

2. If the first autoantibody targets GAD65 (GADA), a protein inside the insulin-producing cells In Sweden this usually happens at the age of two and half, whereas in the study as a whole it was most common at the age of two.

3. If both autoantibodies are first found together

“In TEDDY, 40 per cent of these children had already developed diabetes,” said Åke Lernmark

Of the participating children, 6.5 per cent had their first autoantibody before the age of six.

  • In 44 per cent of cases, they only had an autoantibody against insulin (IAA). Most of them had this by the age of 1-2.
  • In 38 per cent of cases, GAD65 autoantibodies (GADA) were detected. The numbers increased until the age of two and then remained constant.
  • In 14 per cent of cases both autoantibodies were found at the same time, with a peak at the age of 2-3.

The hereditary risk of type 1 diabetes determined which autoantibody the children had. However, it is still not known what causes the immune system to start attacking the body’s own insulin cells to start with. One theory is that a viral infection could be the trigger.

“It is possible that there are two different diseases involved. Perhaps one virus triggers the autoantibodies against insulin and another one the autoantibodies against GAD65,” said Åke Lernmark.

Footnote: Since the birth of the children in the TEDDY study, their parents have kept regular, detailed food diaries, submitted blood and stool samples, nail samples and information about illnesses and medication. When autoantibodies are detected in a child’s blood, the researchers begin the sizeable task of analysing all the material in the hunt for what it is that may have caused the immune system to mutiny.

 

Lund University. “Early signs in young children predict type 1 diabetes.” ScienceDaily. ScienceDaily, 26 February 2015. Click here to read the originally published article on Science Daily.

 

Learn More +

Unlimited access to all the essential project updates latest diabetes research news, and more.