DRC & Research News

This page shares the latest news in T1D research and DRC’s community.

Get the most recent diabetes research news, delivered straight to your inbox

DNA Strands

Recapping Current Research Regarding Type 1 Diabetes Development and Cardiovascular Risks

Our bodies are formed from an innumerable number of cells and molecules. Both DNA and RNA play a role in determining cells’ function and purpose. At a conference of the National Congress of the Spanish Diabetes Society, researchers revealed new studies regarding the potential role of long non-coding RNAs (lncRNAs) in the development of type 1 diabetes, as well as the risk of cardiovascular problems in individuals with the disease.

A recent study found that lncRNA, which are use in transcriptional and post-transcriptional regulation of cells and are not translated into proteins, may be involved in the destruction of insulin-producing beta cells. There may be some forms of lncRNAs that affect inflammation and cell death, which are factors in the development of type 1 diabetes.

Dr. Izortze Santín Gómez, a professor at the University of the Basque Country and a researcher at the Biocruces Bizkaia Research Institute is studying the fundamental characteristics of the lncRNAs and how they may affect pancreatic beta cells on a genetic-molecular level. Once this is better understood, researchers could begin modifying the lncRNAs to create a targeted therapy that increases survival rate and viability of the pancreatic beta cells.

Another study that was presented at the conference involved cardiovascular risk for individuals with type 1 diabetes. Joseph Ribalta, a professor at the Rovira i Vigili University of Reus, found that “more than 30% of heart attacks occur in people with apparently normal LDL cholesterol.” High cholesterol is a key risk factor for heart attacks. His findings have revealed that individuals with T1D may be at greater risk because “LDL particles are more numerous and smaller, that their HDLs work less effectively and/or that there are some lipoproteins (remnants) that the body has trouble eliminating.”

Identifying these potential risk factors and knowing how to test for or treat them could help reduce hidden cardiovascular risk in individuals with T1D. For instance, focusing on triglycerides rather than cholesterol may be beneficial for patients who meet certain criteria.

There is a lot of interesting work coming out of laboratories and universities around the world regarding type 1 diabetes. Researchers are constantly improving and refining their understanding of the disease and possible ways to prevent, treat, or cure it. Diabetes Research Connection (DRC) is committed to contributing to this wealth of knowledge by providing critical funding to early-career scientists pursuing novel research studies focused on type 1 diabetes. Click to learn more about current projects and provide support.

Learn More +

OUR PROJECTS

See our approved research projects and campaigns.

Role of the integrated stress response in type 1 diabetes pathogenesis
In individuals with type 1 diabetes (T1D), the insulin-producing beta cells are spontaneously destroyed by their own immune system. The trigger that provokes the immune system to destroy the beta cells is unknown. However, accumulating evidence suggest that signals are perhaps first sent out by the stressed beta cells that eventually attracts the immune cells. Stressed cells adapt different stress mitigation systems as an adaptive response. However, when these adaptive responses go awry, it results in cell death. One of the stress response mechanisms, namely the integrated stress response (ISR) is activated under a variety of stressful stimuli to promote cell survival. However, when ISR is chronically activated, it can be damaging to the cells and can lead to cell death. The role of the ISR in the context of T1D is unknown. Therefore, in this DRC funded study, we propose to study the ISR in the beta cells to determine its role in propagating T1D.
Wearable Skin Fluorescence Imaging Patch for the Detection of Blood Glucose Level on an Engineered Skin Platform
zhang
A Potential Second Cure for T1D by Re-Educating the Patient’s Immune System
L Ferreira
Validating the Hypothesis to Cure T1D by Eliminating the Rejection of Cells From Another Person by Farming Beta Cells From a Patient’s Own Stem Cells
Han Zhu
Taming a Particularly Lethal Category of Cells May Reduce/Eliminate the Onset of T1D
JRDwyer 2022 Lab 1
Can the Inhibition of One Specific Body Gene Prevent Type 1 Diabetes?
Melanie
Is Cholesterol Exacerbating T1D by Reducing the Functionality and Regeneration Ability of Residual Beta Cells?
Regeneration Ability of Residual Beta Cells
A Call to Question… Is T1D Caused by Dysfunctionality of Two Pancreatic Cells (β and α)?
Xin Tong
Novel therapy initiative with potential path to preventing T1D by targeting TWO components of T1D development (autoimmune response and beta-cell survival)
flavia pecanha