DRC & Research News

This page shares the latest news in T1D research and DRC’s community.

Get the most recent diabetes research news, delivered straight to your inbox

Diabetes Researching

Increasing Cell Protection Against Immune System Attacks

One of the challenges researchers have faced with using cell therapy to treat type 1 diabetes is that the body’s immune system may still attack and destroy transplanted cells. This process may be slightly delayed depending on the approach used, but it often still occurs. That means that patients may still need to rely on immune suppression medications in conjunction with cell therapy. However, immunosuppression can increase risk of infection or other complications.

A recent study found that targeting highly durable cells that have the ability to escape immune attacks and survive may be key in developing a more effective treatment for type 1 diabetes. Dr. Judith Agudo has identified stem cells with this “immune privilege” and is working to determine exactly what contributes to this level of protection and how to replicate it with beta cells. Dr. Agudo is an assistant professor in the department of immunology at Harvard Medical School and in the department of cancer immunology and virology at the Dana-Farber Cancer Institute.

If scientists can engineer insulin-producing beta cells that have the ability to avoid attacks from the immune system while still performing their intended functions, this could be a huge step forward in potentially treating type 1 diabetes. The beta cells would be able to stimulate insulin production without requiring the patient to take immune suppression medications, meaning their immune system could continue to function as normal and fend off infection.

Once Dr. Agudo is able to develop these durable beta cells, they will be tested in animal models, followed by humans a few years later. It is important to conduct thorough testing to ensure this method is both safe and effective. If it is, the goal would be to eventually make it available to anyone who requires the use of insulin.

Diabetes Research Connection (DRC) is excited to see how this study evolves and what it could mean for the future of diabetes treatment. While not involved in this study, the DRC plays an integral role in providing critical funding for early career scientists focused on research for type 1 diabetes. Scientists continue to advance understanding of the disease and potential approaches to improve diagnosis, treatment, management, and quality of life for individuals living with type 1 diabetes. Click to learn more about current projects and provide support.

Learn More +
Diabetes Researching

Generating Pancreatic Islet Organoids to Treat Type 1 Diabetes

In individuals with type 1 diabetes, the immune system mistakenly attacks and destroys insulin-producing beta cells. Without a naturally occurring supply of insulin to manage glucose, blood-glucose levels can quickly spiral out of control leading to hypo- or hyperglycemia. If left untreated, this can become potentially fatal.

A recent study found a way to generate an abundance of pancreatic islet organoids that are glucose-responsive and insulin-secreting. As such, they can help with management and potential reversal of type 1 diabetes. Researchers identified a cluster of protein C receptor positive (Procr+) cells in the pancreas of adult mice. These cells have the ability to differentiate into alpha, beta, omega, and pancreatic polypeptide (PP) cells, with beta cells being the most abundant.

The Procr+ islet cells can then be cultured to generate a multitude of islet-like organoids. When the organoids were then be transplanted into adult diabetic mice, they were found to reverse type 1 diabetes. More research is necessary to determine if human pancreatic islets contain these same Procr+ endocrine progenitors and a similar process could be used to treat type 1 diabetes in humans.

As scientists delve deeper into the cellular impact of the disease and how different cells respond and can be manipulated, it opens new doors to potential treatments or cures for type 1 diabetes. Though not involved in this study, this is the type of cutting-edge research that the Diabetes Research Connection (DRC) is committed to supporting. Early-career scientists can receive up to $50,000 in funding through DRC for novel, peer-reviewed research aimed at preventing and curing type 1 diabetes, minimizing complications, and improving the quality of life for individuals living with the disease. To learn more and support these efforts, visit https://diabetesresearchconnection.org.

Learn More +
Pancreatic Islets

Improving Vascularization in Pancreatic Islet Transplants

One of the approaches scientists have been exploring for the treatment of type 1 diabetes is pancreatic islet cell transplants. By introducing these cells into the body, they are often able to maintain better glycemic control and support insulin production. However, there are many challenges that come with this type of treatment. It is essential to protect transplanted islet cells from immune system attack while also promoting sustainability. Cells tend to lose function over time and poor vascularization is often a contributing factor.

In a recent study, scientists have found a way to improve vascularization and therefore function of transplanted human pancreatic islets in diabetic mice. In addition to encapsulating islet cells, they also included human umbilical cord perivascular mesenchymal stromal cells or HUCPVCs. The HUCPVCs had a positive effect on graft function and suppressed T cell responses. In both immunocompetent and immunodeficient diabetic mice, glycemic control was maintained for up to 16 weeks when cells were transplanted via a kidney capsule, and for up to six weeks or seven weeks respectively when administered via a hepatic portal route. Furthermore, with the addition of HUCPVCs to the transplanted islet mass, rejection was delayed and the graft showed some proregenerative properties.

These findings may improve the future of human islet allotransplantation as a viable option for long-term treatment of type 1 diabetes. Scientists are constantly exploring ways to reduce rejection and the need for prolonged immunosuppression while maintaining better glycemic control. This study opens doors for more advanced research on the use of HUCPVCs in islet transplantation as well as related therapies.

Diabetes Research Connection is committed to supporting research for type 1 diabetes by providing early-career scientists with essential funding to keep projects moving forward. Learn more about current studies and how to donate to these efforts by visiting https://diabetesresearchconnection.org.

Learn More +
Diabetes Researching

Advances in Therapeutic Treatment for Type 1 Diabetes without Immune Suppression

One approach that researchers have been exploring to treat type 1 diabetes is cell therapy. By introducing new insulin-producing beta cells or other types of cells, scientists strive to support the body in once again producing its own insulin. A common challenge with this technique is that it often has limited results as the body once again attacks the cells, or they slowly lose function on their own. In addition, cell therapy typically requires immune suppression which can put individuals at risk for other complications.

However, in a recent study, researchers tested a new method of transplanting therapeutic cells by using a retrievable device with a silicone reservoir. The cells are further protected by a porous polymeric membrane that allows macrophages to enter the device without destroying the transplanted cells, or that prevents them from entering at all.

When tested in immunocompetent mice, the device supported normoglycemia for more than 75 days without the need for immunosuppression. The transplanted cells were able to effectively produce erythropoietin, which in turn improves oxygen supply to the body, and also generates insulin to manage blood sugar levels.

This is a notable step forward in improving cell therapy for the treatment of type 1 diabetes. More research and testing are required to determine how this process translates into human models. Researchers have been trying to limit or eliminate the need for immune suppression while transplanting healthy pancreatic, islet, and stem cells into the body to control blood glucose levels.

Dan Anderson, Ph.D., a member of the Diabetes Research Connection (DRC) Scientific Review Committee, is the senior author of the article published regarding these findings. DRC is excited to see where these advances may lead and what it could mean for the future of cell transplantation techniques and cell therapy for type 1 diabetes. The organization provides critical funding for a wide range of projects related to improving diagnosis, treatment, and prevention of the disease. Learn more about current studies and how to support these efforts by visiting https://diabetesresearchconnection.org.

Learn More +
Stem Cells

Scientists Found a Way to Generate Insulin-Producing Beta Cells

More than one million people in the United States are living with type 1 diabetes according to statistics from the Centers for Disease Control and Prevention. There is a strong push to improve management of the disease and find a cure. The more researchers learn about T1D, the more precise their prevention and treatment methods become.

A recent study reveals that improvements in stem cell therapy have reversed T1D in mice for at least nine months and, in some cases, for more than a year. One of the challenges that scientists have faced with using human pluripotent stem cells (hPSCs) is that it can be difficult to zero differentiation in one specific type of cell. Often multiple types of pancreatic cells are produced. While there may be an abundance of cells that scientists want, the infiltration of excess cells that are not needed diminishes their impact (even though they are not harmful).

Scientists at the Washington University School of Medicine in St. Louis have found a way to generate insulin-producing beta cells without creating as many irrelevant cells. Their approach focuses on the cell’s cytoskeleton, which is its inner framework. Through this process, they were able to produce vast amounts of beta cells that are able to normalize blood glucose levels.

When transplanted into severely diabetic mice (blood glucose levels above 500 mg/dL), the cells effectively reversed the effects of diabetes and brought blood sugar levels down into target range within two weeks. Normoglycemia was maintained for at least nine months.

This is a major step forward in stem cell therapy and the use of hPSCs to potentially cure diabetes one day. There is still more testing and research that needs to be done before this approach is applied to human trials.

Ongoing research is essential for finding a cure for T1D. Diabetes Research Connection supports these efforts by providing critical funding to early-career scientists pursuing novel research studies on the disease. By giving them the means to complete their projects, these researchers can continue to advance knowledge and treatment options. Learn more about current studies and how to help by visiting https://diabetesresearchconnection.org.

Learn More +

OUR PROJECTS

See our approved research projects and campaigns.

Role of the integrated stress response in type 1 diabetes pathogenesis
In individuals with type 1 diabetes (T1D), the insulin-producing beta cells are spontaneously destroyed by their own immune system. The trigger that provokes the immune system to destroy the beta cells is unknown. However, accumulating evidence suggest that signals are perhaps first sent out by the stressed beta cells that eventually attracts the immune cells. Stressed cells adapt different stress mitigation systems as an adaptive response. However, when these adaptive responses go awry, it results in cell death. One of the stress response mechanisms, namely the integrated stress response (ISR) is activated under a variety of stressful stimuli to promote cell survival. However, when ISR is chronically activated, it can be damaging to the cells and can lead to cell death. The role of the ISR in the context of T1D is unknown. Therefore, in this DRC funded study, we propose to study the ISR in the beta cells to determine its role in propagating T1D.
Wearable Skin Fluorescence Imaging Patch for the Detection of Blood Glucose Level on an Engineered Skin Platform
zhang
A Potential Second Cure for T1D by Re-Educating the Patient’s Immune System
L Ferreira
Validating the Hypothesis to Cure T1D by Eliminating the Rejection of Cells From Another Person by Farming Beta Cells From a Patient’s Own Stem Cells
Han Zhu
Taming a Particularly Lethal Category of Cells May Reduce/Eliminate the Onset of T1D
JRDwyer 2022 Lab 1
Can the Inhibition of One Specific Body Gene Prevent Type 1 Diabetes?
Melanie
Is Cholesterol Exacerbating T1D by Reducing the Functionality and Regeneration Ability of Residual Beta Cells?
Regeneration Ability of Residual Beta Cells
A Call to Question… Is T1D Caused by Dysfunctionality of Two Pancreatic Cells (β and α)?
Xin Tong
Novel therapy initiative with potential path to preventing T1D by targeting TWO components of T1D development (autoimmune response and beta-cell survival)
flavia pecanha