DRC & Research News

This page shares the latest news in T1D research and DRC’s community.

Get the most recent diabetes research news, delivered straight to your inbox

Article 16

Glucose-Sensing Neurons Work Together to Manage Blood Sugar

Whereas insulin is necessary to combat high blood glucose levels, a different hormone is necessary to manage low ones: glucagon. This hormone helps to regulate glucose production and absorption bringing glucose levels back into an acceptable range.

A recent study from researchers at Baylor University and other institutions found that there is a specific group of neurons in the brain that may play an integral role in blood sugar regulation and preventing hypoglycemia. Within the ventrolateral subdivision of the ventromedial hypothalamic nucleus region, there are estrogen receptor-alpha neurons that are also glucose-sensing.

What the researchers found particularly interesting was that half the neurons became more active when blood sugar levels were high (glucose-excited), and the other half became more active when blood sugar levels were low (glucose-inhibited). Furthermore, each group of neurons used a different ion channel to regulate neuronal firing activities. However, they both led to the same result – increasing blood glucose levels when they were low – even though they were activating different circuits in the brain. This leads to a perfect balance in managing blood sugar.

The next step in the study is to investigate whether the fact that all of the neurons in this specific group that expressed estrogen receptors play a role in the glucose-sensing process. In turn, this could lead to more gender-specific studies to determine differences in neuronal function when it comes to blood sugar regulation.

One important factor to note is that all of these studies were conducted on hypoglycemic mice. The researchers did not identify whether the process is believed to be the same in humans.

This is another step forward in better understanding how diabetes affects the body, brain, and functioning. Diabetes Research Connection strives to empower early-career scientists in pursuing novel, peer-reviewed studies related to type 1 diabetes by providing up to $50K in funding. Research is focused on the prevention and cure of type 1 diabetes as well as minimizing complications and improving quality of life for individuals living with the disease. Click to learn more about current projects and provide support.

Learn More +

OUR PROJECTS

See our approved research projects and campaigns.

Role of the integrated stress response in type 1 diabetes pathogenesis
In individuals with type 1 diabetes (T1D), the insulin-producing beta cells are spontaneously destroyed by their own immune system. The trigger that provokes the immune system to destroy the beta cells is unknown. However, accumulating evidence suggest that signals are perhaps first sent out by the stressed beta cells that eventually attracts the immune cells. Stressed cells adapt different stress mitigation systems as an adaptive response. However, when these adaptive responses go awry, it results in cell death. One of the stress response mechanisms, namely the integrated stress response (ISR) is activated under a variety of stressful stimuli to promote cell survival. However, when ISR is chronically activated, it can be damaging to the cells and can lead to cell death. The role of the ISR in the context of T1D is unknown. Therefore, in this DRC funded study, we propose to study the ISR in the beta cells to determine its role in propagating T1D.
Wearable Skin Fluorescence Imaging Patch for the Detection of Blood Glucose Level on an Engineered Skin Platform
zhang
A Potential Second Cure for T1D by Re-Educating the Patient’s Immune System
L Ferreira
Validating the Hypothesis to Cure T1D by Eliminating the Rejection of Cells From Another Person by Farming Beta Cells From a Patient’s Own Stem Cells
Han Zhu
Taming a Particularly Lethal Category of Cells May Reduce/Eliminate the Onset of T1D
JRDwyer 2022 Lab 1
Can the Inhibition of One Specific Body Gene Prevent Type 1 Diabetes?
Melanie
Is Cholesterol Exacerbating T1D by Reducing the Functionality and Regeneration Ability of Residual Beta Cells?
Regeneration Ability of Residual Beta Cells
A Call to Question… Is T1D Caused by Dysfunctionality of Two Pancreatic Cells (β and α)?
Xin Tong
Novel therapy initiative with potential path to preventing T1D by targeting TWO components of T1D development (autoimmune response and beta-cell survival)
flavia pecanha