DRC & Research News

This page shares the latest news in T1D research and DRC’s community.

Get the most recent diabetes research news, delivered straight to your inbox

Research Study for type 1 diabetes

Proactively Identifying Type 1 Diabetes

Identifying Type 1 Diabetes Development

Type 1 diabetes develops when the body mistakenly attacks and destroys insulin-producing beta cells. As the number of cells depletes, the body is unable to adequately control blood sugar levels. Researchers have been striving to find a way to prevent this destruction from occurring or to find a way to replace these cells so that the body can once again manage its own blood sugar.

A recent study took a closer look at exactly when this transformation begins to take place and beta cells begin dying off. They found that in many participants, the decline started at least six months prior to when patients would meet clinical requirements for a type 1 diabetes diagnosis. Diagnostic thresholds are currently a “fasting glucose of ≥126 mg/mL or 2-hour glucose of ≥200 mg/dL.”

The study involved 80 patients split into three categories: younger than age 11, ages 11 to 20, and older than age 20. All participants were first- or second-degree relatives of someone with type 1 diabetes and were diagnosed themselves while undergoing oral glucose tolerance tests (OGTTs) every six months. The results showed that across all age groups, C-peptide levels started declining around 12 months before diagnosis but showed the most significant changes in function in the 6 months prior to and 12 months following diagnosis.

By tracking these changes in individuals who are considered at-risk of developing type 1 diabetes, doctors may be able to catch declining beta-cell function early on and intervene with treatment before patients reach diagnostic thresholds for the disease. This could potentially be a way to prevent or slow the onset of type 1 diabetes through proactive immunotherapy.

More research is needed to further explore these findings and expand them to a larger group of participants. However, it provides researchers with insight on when type 1 diabetes may begin to develop and some changes to focus on. Diabetes Research Connection (DRC), though not involved with this study, supports early-career scientists in pursuing novel research studies around type 1 diabetes to help advance prevention and treatment efforts as well as minimizing complications, improving quality of life, and finding a cure. Learn more about current studies and how to support these projects by visiting https://diabetesresearchconnection.org.

Learn More +
Medical Technology

Helping Drive Technology Advancements

Diabetes Patients Are Helping Drive Technology Advancements

Managing type 1 diabetes is an around-the-clock job. Patients must always be aware of what their blood sugar level is, whether it is trending up or down, whether or not to administer insulin, and if they do need insulin, how much. While there have been many advancements in technology to help with monitoring and insulin administration, the development and approval process is often long and drawn out. There are a limited number of devices approved by the government for use.

Patients with type 1 diabetes have begun taking their health into their own hands and improving treatment options. There are free directions online for how patients can connect their continuous glucose monitor (CGM) and their insulin pump with their smartphone to create a closed-loop system that tracks their blood glucose and automatically administers insulin as necessary. This type of artificial pancreas is something that researchers and pharmaceutical companies have been working on for years, but to date, there is only one commercially available closed-loop system available for use in Canada.

Jonathan Garfinkel, a Ph.D. candidate in the Faculty of Arts at the University of Alberta, took his chances and used the patient-created instructions for setting up the closed-loop system two years ago, and it has been life-changing. Previously, he was having a lot of difficulty managing his blood sugar overnight, and it would drop dangerously low. With the closed-loop system, his blood sugar has become much stabler overnight, and he is not tasked with regularly doing finger pricks and figuring out insulin dosing on his own.

These advancements in technology that patients with diabetes are developing have prompted pharmaceutical companies to quicken their own pace when it comes to getting devices created and approved for commercial use. Patients are becoming increasingly more comfortable with technology and relying on smartphones, sensors, and other devices to help them stay abreast of their health.

Garfinkel himself is also working on a project to advance technology for diabetes treatment. He is in the process of developing “a more affordable glucose sensor that would sit on top of the skin, rather than being inserted subcutaneously.” It was a project he began in collaboration with Mojgan Daneshmand, an engineer and Canada Research Chair in Radio Frequency Microsystems for Communication and Sensing, who was unfortunately killed in a plane crash in January 2020. Garfinkel is continuing the work that they started together and was awarded a U of A seed grant to help.

There are so many young researchers with incredible potential who can benefit from funding that will allow them to carry out their plans and see the results. The Diabetes Research Connection provides up to $50K in funding to early-career scientists to empower them in moving forward with their novel research projects focused on type 1 diabetes. These opportunities open doors to improving the prevention, treatment, and management of type 1 diabetes, as well as improving quality of life, minimizing complications, and one day finding a cure. Learn more by visiting https://diabetesresearchconnection.org.

Learn More +

Unlimited access to all the essential project updates latest diabetes research news, and more.