DRC & Research News

This page shares the latest news in T1D research and DRC’s community.

Get the most recent diabetes research news, delivered straight to your inbox

iPhone desktop

Could Insulin Management be Controlled with an App?

Determining the appropriate amount of insulin to administer in response to drops in blood sugar can be challenging, but it is something that individuals with type 1 diabetes must do daily in order to manage their health. If left untreated, low blood sugar (or hypoglycemia) can be potentially fatal.

A team of researchers and physicians at Oregon Health & Science University (OHSU) are looking to improve diabetes management through a new app called DailyDose. While there are similar types of apps that exist, what sets DailyDose apart is that has demonstrated statistically relevant outcomes through multiple clinical studies. The AI algorithm for the app was originally developed entirely through a mathematical simulator, but when real-world data was used, the recommendations generated by the app aligned with recommendations provided by physicians, or were still considered safe, more than 99% of the time. In addition, improved glucose control was achieved. This was determined after 100 weeks of testing conducted in four-week trials.

Each trial involved 16 patients with type 1 diabetes and combined information from a continuous glucose monitor or wireless insulin pen with the app. Nearly 68% of the time, the recommendations generated agreed with those of physicians.

These findings are important because they show that the app may be effective in supporting individuals with type 1 diabetes in reducing risk of hypoglycemia by better managing insulin administration and blood glucose levels between appointments with their endocrinologist. Larger clinical trials are needed over longer periods of time to further determine the accuracy and effectiveness of the app in relation to other treatment strategies.

Technology is becoming increasingly more popular and advanced in terms of managing type 1 diabetes. There are numerous devices and apps already available and more in the works. This gives individuals with type 1 diabetes a wider variety of options in order to determine what works best for their needs and lifestyle.

Though not involved with this study, the Diabetes Research Connection (DRC) strives to continue growing understanding of type 1 diabetes and improving prevention and treatment methods as well as one day finding a cure. Early-career scientists can receive critical funding through the DRC to pursue novel research studies around T1D. Learn more about current projects and how to support these efforts at http://diabetesresearchconnection.org.

Learn More +
Diabetes and Yoga

Managing Blood Sugar During Exercise with Long-Acting Insulin

Engaging in regular physical activity is good for overall health. It helps with weight management, blood pressure, cardiovascular health, blood sugar, and more. Individuals with type 1 diabetes may find exercise helpful in improving insulin sensitivity and reducing the amount of insulin needed following activity. However, this can also be a challenge because they must carefully monitor their blood-glucose levels to ensure that they do not become too low or too high.

A recent study found that combining long-acting insulin (degludec) with the use of an insulin pump can be beneficial for managing glucose levels during and after exercise. Some individuals with T1D prefer to remove their insulin pump during exercise, and by administering degludec before starting exercise, they were able to remain in target range (70-180 mg/dL) for longer periods of time than when just using the insulin pump alone.

The study involved 24 physically active adults who participated in two phases of workouts that included five weeks of high- and moderate-intensity sessions. During one phase, they only used their insulin pump to control their basal insulin needs, and for the second, they used the insulin pump and the degludec. When using the insulin pump alone, they spent an average of 143 minutes (40% of the time) in target range, but when using the degludec, this time in range increased to 230 minutes (64% of the time).

The researchers found that “this was down to a significant 87-minute reduction in time spent in hyperglycemia, with no difference seen for hypoglycemia” as well. In addition, when using the hybrid insulin approach, blood sugar rose just 14.5 mg/dL after 30 minutes following exercise, compared to an 82.9 mg/dL increase using the insulin pump alone.

More than two-thirds of participants found the hybrid insulin regimen useful, and nearly half said they were somewhat or very likely to continue using this approach while exercising in the future. The researchers are looking at moving forward with a larger study to see if these results continue to be significant when more people are involved.

This study shows that there may be more than one effective option for improving glucose control during exercise for individuals with type 1 diabetes. They do not have to rely on the insulin pump alone, and some may find administering degludec beneficial when exercising without their insulin pump.

Diabetes Research Connection (DRC) is interested to see how this study plays out in the future and if more people can benefit from the hybrid insulin regimen while exercising. It is encouraging to see more options become available to help individuals better control their diabetes while improving their health and quality of life. DRC supports early-career scientists in pursuing novel research on type 1 diabetes by providing access to funding. The goal is to one day find a cure while also improving prevention, treatment, and management of the disease. Click to learn more about current projects and provide support.

Learn More +
Diabetes and Babies

Could Benefits of Early Screening for Type 1 Diabetes Outweigh Costs?

Advances in science have improved the ability to identify warning signs for type 1 diabetes (T1D) early on. For instance, scientists can detect the destruction of insulin-producing beta cells before noticeable signs of diabetes emerge or conditions such as diabetic ketoacidosis (DKA) occur. They have also determined other key changes and factors that may put an individual at increased risk.

A recent study found that conducting health screenings on children can increase awareness regarding their risk of developing T1D, help prevent DKA occurrences, and encourage individuals to take better care of their health to reduce complications and impact of the disease.

Researchers at the Barbara Davis Center for Diabetes at the University of Colorado School of Medicine created the Autoimmunity Screening for Kids (ASK) study to determine if this type of health screening is beneficial. While it can be costly to conduct widespread screenings for children between the ages of 1 and 17, they found that there are a host of benefits such as those mentioned above. In addition, the long-term cost savings can quickly make up for screening expenses because when individuals know their risk and learn how to better manage their T1D, it can reduce complications and associated healthcare costs.

Now they are looking at how to effectively implement screenings, what the practice would look like, what the age schedule for screenings should be, and who would benefit most. Early detection can play an integral role in managing T1D and improving quality (and quantity) of life.

Diabetes research occurs at all stages of the disease, from the time patients are pre-symptomatic to those with the most serious complications. It covers everything from screenings to closed-loop systems for treatment to understanding the cellular and molecular impact of the disease. Diabetes Research Connection is committed to supporting a wide range of T1D research by providing critical funding to early-career scientists. Learn more about current projects and how to help by visiting https://diabetesresearchconnection.org.

Learn More +
Insulin Products

Study Affirms Safety and Effectiveness of U.S. Insulin Products

When an individual with type 1 diabetes (T1D) administers insulin to control their blood sugar levels, they want to feel confident that no matter what U.S. retail pharmacy they purchased their insulin from, it will work. Differences in consistency and potency of insulin could have a detrimental impact on patient health and their ability to manage their T1D.

A recent study looked at samples of human and analog insulin products from across manufacturers and found that they were all correctly labeled and contained the expected quantity of active insulin. Since individuals with T1D rely on insulin injections multiple times per day, it can be reassuring to know that the product they are using adheres to how it is labeled.

The study was a joint effort between JDRF, the American Diabetes Association (ADA), and the Leona M. and Harry B. Helmsley Charitable Trust. The study was conducted within a single year, so now the team is looking to expand to a second phase that measures for any variations again, this time looking at “potential seasonal variations in reported insulin activity.”

Diabetes Research Connection (DRC) is proud to see that manufacturers are producing quality insulin products that meet consistency and potency standards. Worrying about the quality of their insulin is not something that individuals with T1D should have to do. The DRC supports early-career scientists in pursuing novel, peer-reviewed research focused on the prevention and cure of type 1 diabetes as well as minimizing complications and improving quality of life for individuals living with the disease. To learn more, visit https://diabetesresearchconnection.org.

Learn More +
Article 17

Combination Therapy May Help Improve Blood Sugar Management

Maintaining stable blood sugar levels and minimizing complications is a constant challenge for many individuals living with type 1 diabetes. They must always be alert to whether their blood sugar is too low or too high and how much insulin to administer. However, researchers are continually exploring ways to improve blood sugar management by better understanding how diabetes affects the body.

In a recent study, researchers from Stanford University have taken a new approach by combining two FDA-approved drugs and developing a way for them to work in tandem as they naturally do in the body through a single injection. In addition to insulin, individuals with type 1 diabetes (T1D) would also take a drug based on the hormone amylin. This drug is already FDA-approved, but less than 1% of patients with diabetes take it. This could be because they do not want to administer a second shot every time they take insulin. When combined, insulin and the amylin-based drug work together just as they do when naturally occurring in the body. Amylin is produced by the same insulin-producing beta cells in the pancreas.

According to researchers, amylin works in three ways:

“First, it stops another hormone, glucagon, from telling the body to release additional sugar that has been stored in the liver. Second, it produces a sense of “fullness” at mealtimes that reduces food intake. Third, it actually slows the uptake of food by the body, reducing the typical spike in blood sugar after a meal. All three are a boon to diabetes care.”

However, in their current states, insulin and the amylin-based drug are too unstable to combine in one syringe. To combat this problem, the researchers have developed a protective coating that encompasses each molecule individually, allowing them to stably exist together. This molecular wrapper has a Velcro-like feature that “reversibly binds to both insulin and amylin separately, shielding the unstable portion of each molecule from breakdown.” Once administered, the coating dissolves in the bloodstream.

With this protective coating – known as cucurbituril-polyethylene glycol (CB-PEG) – the combination of insulin and the amylin-based drug showed stability for at least 100 hours. This could give it a shelf life that is long enough to be used with an insulin pump. Researchers have tested the combination therapy on diabetic pigs and are working toward gaining approval for human trials. Since both drugs are already FDA-approved, this could help to move things along more quickly.

Diabetes Research Connection (DRC) is excited to see what this could mean for the future of T1D treatment and blood glucose management. This combination therapy could help alleviate some of the challenges that patients face and improve management of the disease. Though not involved with this study, the DRC is committed to supporting research around type 1 diabetes in order to improve diagnosis, treatment, prevention, and the pursuit of a cure. The organization provides critical funding to early-career scientists to advance their research. Click to learn more about current projects and provide support.

Learn More +
Article 16

Glucose-Sensing Neurons Work Together to Manage Blood Sugar

Whereas insulin is necessary to combat high blood glucose levels, a different hormone is necessary to manage low ones: glucagon. This hormone helps to regulate glucose production and absorption bringing glucose levels back into an acceptable range.

A recent study from researchers at Baylor University and other institutions found that there is a specific group of neurons in the brain that may play an integral role in blood sugar regulation and preventing hypoglycemia. Within the ventrolateral subdivision of the ventromedial hypothalamic nucleus region, there are estrogen receptor-alpha neurons that are also glucose-sensing.

What the researchers found particularly interesting was that half the neurons became more active when blood sugar levels were high (glucose-excited), and the other half became more active when blood sugar levels were low (glucose-inhibited). Furthermore, each group of neurons used a different ion channel to regulate neuronal firing activities. However, they both led to the same result – increasing blood glucose levels when they were low – even though they were activating different circuits in the brain. This leads to a perfect balance in managing blood sugar.

The next step in the study is to investigate whether the fact that all of the neurons in this specific group that expressed estrogen receptors play a role in the glucose-sensing process. In turn, this could lead to more gender-specific studies to determine differences in neuronal function when it comes to blood sugar regulation.

One important factor to note is that all of these studies were conducted on hypoglycemic mice. The researchers did not identify whether the process is believed to be the same in humans.

This is another step forward in better understanding how diabetes affects the body, brain, and functioning. Diabetes Research Connection strives to empower early-career scientists in pursuing novel, peer-reviewed studies related to type 1 diabetes by providing up to $50K in funding. Research is focused on the prevention and cure of type 1 diabetes as well as minimizing complications and improving quality of life for individuals living with the disease. Click to learn more about current projects and provide support.

Learn More +
Diabetes Researching

Targeting the Effects of Specific Drugs on Pancreatic Islets

The production of insulin and glucagon used to regulate blood sugar levels come from pancreatic islet cells. In individuals with type 1 diabetes, the immune system mistakenly attacks and destroys these cells leaving the body unable to naturally regulate blood sugar. That means that individuals must continuously monitor and manage these levels themselves.

A recent study examined the impact that specific drugs have on pancreatic islet cells and their function. Researchers were able to fine-tune single-cell transcriptomics to remove contamination from RNA molecules that could interfere with results and negatively affect reliability of the data.

Once they had created decontaminated transcriptomes, they tested three different drugs that relate to blood glucose management. They found that one drug, FOXO1, “induces dedifferentiation of both alpha and beta cells,” while the drug artemether “had been found to diminish the function of alpha cells and could induce insulin production in both in vivo and in vitro studies.” They compared these drugs in both human and mouse samples to determine if there were any differences in how the cells responded. One notable difference was that artemether did not have a significant impact on insulin expression in human cells, but in mouse cells, there was reduced insulin expression and overall beta cell identity.

Single-cell analysis of various drugs could help guide future therapeutic treatments for type 1 diabetes as researchers better understand their impact. Targeted therapies have become a greater focus of research as scientists continue to explore T1D at a cellular level.

Diabetes Research Connection (DRC) is interested to see how single-cell sequencing and the ability to decontaminate RNA sequences could affect diabetes research. The organization supports a wide array of T1D-focused studies by providing critical funding to allow early-career scientists to advance their research. To learn more and support these efforts, visit https://diabetesresearchconnection.org.

Learn More +
Girl on Phone

Artificial Pancreas App Supports Type 1 Diabetes Management

Maintaining good glycemic control is challenging when living with type 1 diabetes. Individuals must carefully monitor their blood glucose levels throughout the day, then administer the appropriate amount of insulin to try to stay within target range. This can be more difficult than it sounds. Furthermore, many people with type 1 diabetes struggle with their blood sugar dropping overnight while they are asleep.

Patients living in the UK may have access to a new artificial pancreas app that takes away some of the stress and burden of constant blood sugar management. The CamAPS FX app works in conjunction with the Dana RS insulin pump and the Dexcom G6 continuous glucose monitor. Using a complex algorithm, the app tracks blood glucose levels, then automatically adjusts insulin administration accordingly. This reduces the demand for regular finger sticks to check blood sugar, and patients do not need to calculate how much insulin they require on their own.

The app has been approved in the UK for individuals age one and older, including pregnant women, who have type 1 diabetes. It was developed based on 13 years of clinical research conducted by Professor Roman Hovorka from the University of Cambridge and Cambridge University Hospitals NHS Foundation Trust and his team at the Wellcome-MRC Institute of Metabolic Science. In addition, data from the app can be shared with patients’ healthcare teams allowing them to provide more personalized diabetes care.

Technology has made some significant advancements in type 1 diabetes care, and this is one more example of how it can impact management of the disease and improve health outcomes. Artificial pancreas technology is an area that researchers have been focused on improving over the years in order to give patients more options and reduce the burden of managing the disease.

Diabetes Research Connection (DRC) is excited to see more results from use of the app and what it could mean for future diabetes management, not just in the UK but around the world. Currently the app is only available to patients at select diabetes clinics in the UK. Though not involved with this project, the DRC is committed to advancing diabetes research to help prevent and cure type 1 diabetes, minimize complications, and improve quality of life for those living with the disease. Early-career scientists can receive up to $50K in funding to support novel, peer-reviewed research projects. To learn more about current studies and contribute to these efforts, visit https://diabetesresearchconnection.org.

Learn More +
Diabetes Projector

Advancements in Type 1 Diabetes Management Technology

One of the challenges – and frustrations – of living with type 1 diabetes (T1D) is multiple finger sticks each day to test blood sugar levels. Individuals want to ensure that they are staying on top of blood sugar in order to administer insulin or glucose as needed. Even continuous glucose monitors require a tiny needle stick in order to monitor blood sugar levels.

In a recent study, researchers share advancements using laser technology, rather than blood samples, in order to measure glucose concentration. The device they developed uses Raman spectroscopy, which shines near-infrared light on the skin to determine its chemical composition. This includes reading the signal given off by glucose located in the interstitial fluid that surrounds skin cells.

The near-infrared light only has the ability to penetrate a few millimeters into the skin, so researchers needed to find a reliable way to measure glucose from this reading. Initially, they were comparing the chemical composition of the tissue with blood samples taken simultaneously to determine glucose levels. However, there was too much unpredictability since movement of the patient or changes in the environment could alter results. In addition, it required a great deal of calibration.

The Laser Biomedical Research Center at MIT has spent more than 20 years working on developing a glucose sensor using Raman spectroscopy, and they have made a lot of advancements over the years. The latest device has evolved from indirect measurement of glucose concentrations, like those mentioned above, to direct measurement. Researchers found that by using a small fiber to collect the Raman signal after shining the near-infrared light at a 60-degree angle, they could filter out unwanted signals from other solid components in the skin. Testing the device on pigs, they were able to get an accurate glucose reading for up to an hour, and it only required about 15 minutes of calibration.

One drawback to the current technology is that the device is approximately the size of a desktop printer, meaning it is not easily portable. With a slightly smaller system, individuals could have a testing device at home or at work where they could place their finger on a sensor and Raman spectroscopy would be used to check blood sugar. Eventually, researchers would like to create a wearable monitor that would act as a continuous glucose monitor but without any needles.

After more than two decades, researchers are finally getting closer to their goal of creating a laser-based glucose sensor that can be used for everyday monitoring. It is encouraging to see advancements that seek to take some of the pain and inconvenience out of blood sugar monitoring by eliminating the need for so many needles.

Diabetes Research Connection (DRC) is excited to see how this technology continues to advance and what it may mean for the future of continuous glucose monitoring and diabetes management. Researchers around the world are focused on improving the prevention, treatment, and management of type 1 diabetes. The DRC supports these efforts by providing up to $75K in funding to early-career scientists pursuing novel research for T1D. Learn more by visiting https://diabetesresearchconnection.org.

Learn More +
Diabetes Researching

Exploring Challenges with Hybrid Closed-Loop Insulin Delivery Systems

There are many different options for managing diabetes from manually checking blood sugar and administering insulin to using a hybrid-closed loop insulin delivery system that does the work automatically with some human input. This type of insulin delivery system, also referred to as an artificial pancreas, was designed to improve diabetes management and blood sugar control without as much demand on patients.

However, a recent study found that nearly one-third of children and young adults stopped using the hybrid closed-loop system within six months. Some of them even discontinued use of a continuous glucose monitoring (CGM) system. The study involved 92 participants with type 1 diabetes who had an average age of 16. Each participant began using the Medtronic 670G system in manual mode for two weeks before switching to auto mode. They received follow-up training via phone within one month after starting auto mode, then were seen in a clinic every three months during the next six months.

The Medtronic 670G system uses CGM data to automatically control basal insulin delivery. This can help manage changes in blood sugar more quickly and administer the correct amount of insulin without patient input. If boluses are needed, however, the individual must enter their carb count and blood glucose number manually.

Researchers found that use of auto mode continued to decrease over the 6-month trial period, dropping from 65.5% during the first month to 51.2% by the sixth month. In total, 28 youth stopped using the hybrid closed-loop system within the first six months, and 21 of those 28 stopped using CGM as well. This raises the question as to whether CGM use posed some barriers to success and continued use of the hybrid closed-loop system.

The study did show that while participants used the artificial pancreas, their time spent within range for blood glucose improved from 50.7% to 56.9%, and their HbA1c levels decreased from 8.7% to 8.4%.

Understanding the strengths and challenges of artificial pancreas use in children and young adults can help researchers to make improvements and adjust systems for better results and continued use. Hybrid closed-loop therapy is just one option for managing type 1 diabetes, and it is important for individuals to find what works best for their situation.

Diabetes Research Connection is committed to providing early-career scientists with the funding necessary to support research designed to prevent, cure, and better manage type 1 diabetes. Funding is critical to continue advancing understanding and therapies for the disease. Click to learn more about current projects and provide support.

Learn More +

OUR PROJECTS

See our approved research projects and campaigns.

Role of the integrated stress response in type 1 diabetes pathogenesis
In individuals with type 1 diabetes (T1D), the insulin-producing beta cells are spontaneously destroyed by their own immune system. The trigger that provokes the immune system to destroy the beta cells is unknown. However, accumulating evidence suggest that signals are perhaps first sent out by the stressed beta cells that eventually attracts the immune cells. Stressed cells adapt different stress mitigation systems as an adaptive response. However, when these adaptive responses go awry, it results in cell death. One of the stress response mechanisms, namely the integrated stress response (ISR) is activated under a variety of stressful stimuli to promote cell survival. However, when ISR is chronically activated, it can be damaging to the cells and can lead to cell death. The role of the ISR in the context of T1D is unknown. Therefore, in this DRC funded study, we propose to study the ISR in the beta cells to determine its role in propagating T1D.
Wearable Skin Fluorescence Imaging Patch for the Detection of Blood Glucose Level on an Engineered Skin Platform
zhang
A Potential Second Cure for T1D by Re-Educating the Patient’s Immune System
L Ferreira
Validating the Hypothesis to Cure T1D by Eliminating the Rejection of Cells From Another Person by Farming Beta Cells From a Patient’s Own Stem Cells
Han Zhu
Taming a Particularly Lethal Category of Cells May Reduce/Eliminate the Onset of T1D
JRDwyer 2022 Lab 1
Can the Inhibition of One Specific Body Gene Prevent Type 1 Diabetes?
Melanie
Is Cholesterol Exacerbating T1D by Reducing the Functionality and Regeneration Ability of Residual Beta Cells?
Regeneration Ability of Residual Beta Cells
A Call to Question… Is T1D Caused by Dysfunctionality of Two Pancreatic Cells (β and α)?
Xin Tong
Novel therapy initiative with potential path to preventing T1D by targeting TWO components of T1D development (autoimmune response and beta-cell survival)
flavia pecanha