Could Type 1 Diabetes Slow Brain Development in Children?

Posted in Diabetes Research News

Since type 1 diabetes occurs when the pancreas produces little to no insulin, it is often diagnosed in childhood when this deficiency become more apparent. The body is unable to naturally manage blood sugar levels since the immune system mistakenly attacks and destroys insulin-producing beta cells. This means that parents must take over this responsibility until children are able to effectively manage their condition on their own.

Many parents are hesitant to overtreat and end up allowing blood sugar levels to remain slightly elevated (hyperglycemia) rather than risk having them drop too low (hypoglycemia). Neither condition is desirable as they can both lead to health complications. The goal is to create a management plan that enables blood sugar levels to remain as normal as possible.

A recent study found that hyperglycemia in children with type 1 diabetes may actually slow brain development and impact brain structure, cognitive function, and sensory processing. The study followed 138 children with type 1 diabetes between the ages of four and seven. Participants had been living with diabetes for an average of 2.4 years. These children were compared to 67 age-matched controls without type 1 diabetes.

After approximately 4.5 years, researchers found that those children with type 1 diabetes had decrements in both full-scale and verbal IQ, which was associated with hyperglycemia and an average HbA1c of 8%. The target goal for children is an HbA1c of less than 7.5%.

However, a larger study found that although full-scale, verbal IQ, and vocabulary were lower in those with T1D, there was no significant difference in processing speed, memory, or learning scores compared to the control group. The brains of children with T1D seemed to compensate for areas where there were challenges, and executive function was similar between groups.

Nelly Mauras, MD, chief of the Division of Endocrinology, Diabetes, and Metabolism at Nemours Children’s Health System and part of the Diabetes Research in Children Network (DirecNet) noted, “We are not suggesting that these youngsters aren’t performing academically. So far, these differences have not translated into functional outcomes in performance, at least not yet.”

Researchers continue to follow these groups in order to gather more information and determine the impact over a longer duration of time. They are interested in learning more about whether advanced technology can make it easier to maintain near normal glucose levels and whether HbA1c guidelines should be lower than 7.5% for children with type 1 diabetes to minimize hyperglycemia.

The Diabetes Research Connection (DRC), though not involved with this study, will continue to follow study progress to see what future comparisons hold and how this may impact treatment options and guidelines for children with type 1 diabetes. Current results may stimulate new research opportunities and increase understanding of the greater impact of T1D on health and development. The DRC provides critical funding for early career scientists to pursue novel research projects related to type 1 diabetes.