DRC & Research News

This page shares the latest news in T1D research and DRC’s community.

Get the most recent diabetes research news, delivered straight to your inbox

Exocrine Pancreas May Play Integral Role in T1D Development

For years, the focus of type 1 diabetes (T1D) research has been on the endocrine pancreas, as that is where the islets of Langerhans reside that secrete insulin, glucagon, and other hormones. The exocrine pancreas is primarily responsible for producing digestive enzymes, bicarbonate, and water to support digestion. However, researchers believe that autoreactive T cells within the exocrine pancreas may contribute to the destruction of insulin-producing beta cells.

recent study found that preproinsulin (PPI)-reactive CD8+ T cells exist not only within the endocrine pancreas but in the exocrine pancreas as well. While researchers know that these cells exist at high levels in individuals with T1D, they have found that they are also reasonably populous in healthy individuals. It may be possible that in healthy individuals without T1D and those who are not autoantibody-positive (aab+), that these PPI-reactive CD8+ T cells remain undetectable to the immune system, thereby causing no negative response.

If the body should experience an up-regulation of major histocompatibility complex (MHC) class 1, this could trigger a reaction where CD8+ T cells become visible and initiate an immune response leading to the destruction of pancreatic islet cells. In turn, this could result in the development of T1D.

Researchers studied various islet areas of the human pancreas and found that donors with T1D had a greater number of PPI-reactive CD8+ T cells than nondiabetic and aab- donors, but that the cells were present in all donors. The presence becomes more abundant as T1D develops. There were also more PPI-reactive CD8+ T cells in areas close to the islets, as well as within insulin-containing islet (ICI) areas. There were fewer cells in insulin-deficient islet (IDI) areas, which indicates that insulin plays an important role in attracting PPI-specific CD8+ T cells.

According to the researchers’ findings, defective thymic selection, and the failure of systemic peripheral tolerance mechanisms may not be the primary drivers behind the development of T1D. Instead, they note that “it is likely that events leading to islet attraction of autoreactive CD8+ T cells already within the pancreas may be a crucial mechanism in T1D development.”

More research is necessary to determine why the exocrine pancreas contains so many PPI-specific CD8+ T cells and exactly how they are triggered in the development of T1D. However, this recent study sheds more light on changes within the pancreas and responses from the immune system that are involved in this disease. Scientists can continue building on these findings moving forward.

Though not involved with this study, the Diabetes Research Connection (DRC) strives to continue advancing research around T1D by providing critical funding to early-career scientists. Contributions from individuals, corporations, and foundations make it possible for scientists to carry out novel, peer-reviewed studies focused on improving diagnosis, treatment, and management of T1D, as well as one day finding a cure. To learn more about current projects and how to support these efforts, visit https://diabetesresearchconnection.org

Learn More +
Gestational Diabetes Complications

Gestational Diabetes Complications Identify Fertile Women at Risk of Permanent Type 1 and Type 2 Diabetes

During pregnancy, women are tested for gestational diabetes mellitus (GDM) to manage their overall health. Gestational diabetes complications can put both women and their babies at risk if not properly managed. While this type of diabetes typically resolves after childbirth, one study found that the condition may help identify women at risk for diabetes – either type 1 or type 2 – in the future.

study involving 435 Finnish women who had GDM were compared to a control group of healthy women who were pair-matched for age, parity, delivery date, and no previous history of diabetes. The data was collected over ten years between 1984 and 1994. Researchers found that women who developed GDM were at increased risk of developing type 1 or type 2 diabetes if their GDM required insulin treatment, and they had at least one autoantibody. The more autoantibodies they had, whether islet cell autoantibodies (ICAs), GAD antibodies (GADA), insulin autoantibodies (IAAs), or the protein tyrosine phosphatase-related protein 2 molecule (IA-2As), the more at risk for diabetes.

Out of the 435 women diagnosed with GDM, 20 developed type 1 diabetes (T1D), and 23 developed type 2 diabetes (T2D), while none of the women in the control group developed either type of diabetes. In addition, the women who developed type 1 diabetes were younger than those who developed type 2 diabetes at the time of initial blood sampling and had a shorter diabetes-free period. A follow-up survey to determine whether type 1 or type 2 diabetes occurred was completed an average of about 6 years after they had GDM.

In total, 155 women with GDM required insulin therapy to treat their condition, and that included 18 of the 20 women who later developed T1D and 18 of the 23 women who developed T2D. Interestingly, almost equal percentages of women treated with insulin and those who were not, 16.7% and 16.9% respectively, had reactivity to at least one autoantibody. Overall, the positive predictive value of autoantibodies was higher in women with GDM than in the control group, with a greater number of autoantibodies occurring in those who went on to be diagnosed with T1D or T2D.

This study shows how GDM may indicate an increased risk of impaired glucose tolerance or destruction of insulin-producing beta cells, leading to T2D and T1D. According to the researchers, “The risk of developing type 1 diabetes after GDM is increased if the woman is ≤30 years of age during pregnancy, needs insulin therapy for GDM, and tests positive for ICAs and/or GADAs.” Some discrepancy in results could be due to other gestational diabetes complications that were not included in the study. In general, if a woman fits within these criteria, it may be beneficial to continue closely monitoring her health after pregnancy to detect diabetes early on.

It is these types of studies that help improve understanding of diabetes risk and early detection. The Diabetes Research Connection (DRC), though not involved in this study, supports type 1 diabetes research by providing critical funding to early-career scientists. One hundred percent of funds go directly to scientists for their projects. Learn more about current projects and how to help by visiting https://diabetesresearchconnection.org.

Learn More +
Hayden

Kraemer Family Update

Remember Hayden!? His story was featured in our 2019 organizational film, “Connect for a Cure,” which debuted at our 2nd annual Del Mar Dance for Diabetes. In this impactful interview, when asked if he believes a cure will be found for him, Hayden responded, “No, probably not when I’m around.” 

Many of our supporters and community members have been asking how are Hayden and his family doing? We received an exciting update to share with everyone. Hayden is now 9 1/2 years old and in 4th grade doing distance learning. He’s doing good but missing regular in-person schooling. His diabetes is managed reasonably well, and his parents have been giving him more responsibility to take care of it. 

During National Diabetes Awareness Month, Hayden’s family, creators of I’m Greater Than, a clothing company that was launched after Hayden was diagnosed, engaged in a daily social media challenge. Hayden’s mom, Jenn, shared facts and statistics to raise awareness of this autoimmune disease. In one post, she shared, “This diagnosis changes your views, your ambitions, your path, your whole life. Our family is closer than ever, and although we will not let this diagnosis define us, we have embraced it and will fight it every day.”

This inspiring family also opened the doors to a new restaurant in Beaumont, CA, called Batter Rebellion. If you live close, stop by and try one of their “ROCKtails” or feast on one of their decadent menu items!

 

Kraemer Family

Learn More +
DRC 2020 Virtual Events

DRC’s 2020 Virtual Events

It is safe to say that 2020 has been unlike any other year. That being said, DRC’s goal for this year has been to find new ways to connect with our community. DRC has had several virtual gatherings ranging from research updates to DRC’s 3rd Annual Dance for Diabetes. If you would like to view them, they will be posted below in order of the date that they took place.

Reducing Stress in Times of Uncertainty with Felise Levine Ph.D. 4/28/2020: View it Here.

Exciting Update on Type 1 Diabetes (T1D) Research with Vincenzo Cirulli Ph.D. 5/19/2020: View it Here. 

Ask Me Anything: Dr. Moore and the Long Road of Type 1 Diabetes (T1D) Care and Discovery with Daniel Moore Ph.D. 6/23/2020: View it Here.

Beyond Stem Cells: A New Paradigm for Regenerative Medicine with Duc Dong Ph.D. 7/14/2020: View it Here.

DRC’s 3rd Annual Dance for Diabetes Virtual Party: View it Here.

Preserving Retinal Cells Survival with Anne Hanneken M.D. and Frans Vinberg Ph.D. 11/10/2020: View it Here.

 

Although this has been an interesting year, we continue to find creative ways to connect with our community. We are looking forward to 2021 and having these exciting updates and events in person!

Learn More +
DRC Happy Hour with KSON

DRC Happy Hour with KSON’s John and Tammy

On Thursday, November 12th, DRC had the opportunity to have a happy hour with John and Tammy, the hosts of KSON, about type one diabetes (T1D) and DRC’s mission in honor of World Diabetes Day on Saturday, November 14th. During the happy hour, Sherry Ahern, a dedicated member of the DRC community and the mother of a T1D, Casey Davis, the Interim Executive Director of DRC, and Hannah Gebauer, the Development Assistant at DRC and a T1D, shared the importance of research towards a cure, prevention, and reducing of complications that come from this autoimmune disease.

Listen to a clip from KSON’s show the day after the happy hour took place that features some of the powerful stories that were shared that night:

 

If you would like to watch the whole happy hour, click here.

Learn More +

Diabetes Awareness Month is Personal for Me

It was 1964 and I was a 15 year old  junior in High School, riding home on the subway on a beautiful November day in New York.  Looking for something to occupy my mind I began to read the subway posters.  My eyes caught one poster that read in bold red letters, “IF YOU HAVE THESE SYMPTOMS, YOU MAY HAVE DIABETES.”   I continued to read down the checklist on the poster: Excessive thirst, frequent urination, loss of appetite, weight loss, fatigue.  I silently checked each symptom.

That past summer, my mother had been bugging me about going to the doctor because she was concerned about my drinking too much water.  I brushed off her concerns citing the hot weather. I had excuses for my weight loss as well.  In fact, I had excuses for all of her concerns, claiming in my assertive teenage voice that,  “I was the expert on my own body.”

When I arrived home, I told my mother about the subway poster and that I thought I had diabetes.  We were at the doctor’s office the next day.  This November marks 56 years of living with T1.

“Diabetes Awareness Month is Personal for Me” was written by Felise Levine, Ph.D. She serves on Diabetes Research Connection’s Board of Directors. She is a retired licensed Clinical Psychologist in private practice in La Jolla. She is a past President of Del Mar Community Connections and Past President of the San Diego Psychological Association. She has been living with type 1 diabetes for 56 years.
Learn More +

DRC’s Co-Founders Interviewed on “Living Better San Diego”

In honor of World Diabetes Day, DRC’s co-founders, David Winkler and Alberto Hayek, MD, were interviewed by Vicki Pepper of “Living Better in San Diego.” This show features Information and interviews with San Diego newsmakers, community leaders, and citizens. In this interview, David and Alberto discuss DRC’s unique approach to funding research for type one diabetes.

You can access this interview by clicking here.

Learn More +

Connect For A Cure: November 2020 Newsletter

DRC has distributed over $400,000 to research projects like Dr. Hughes’s and Dr. Racine’s in 2020 alone! We have received three times the average amount of applications for funding of new projects over the past couple of months. View our “Support a Project” page to see what other research projects we are currently funding by clicking here. Take a look at our newsletter to see how great DRC’s 3rd Annual Dance for Diabetes Virtual Party was! Thank you to everyone who participated and donated to the event, DRC could not do what it does without the generous support of its donors and community.

Click this link to view our November newsletter that we mailed out previously this month about what we’ve been up to and the impact we are making together. It takes a community to connect for a cure!

 

 

Learn More +
Researcher

Could Type 1 Diabetes be an Effect of COVID-19?

Could Type 1 Diabetes be an Effect of COVID-19?

As the coronavirus pandemic continues on, researchers are learning more about the wide range of effects that it has on individuals. The disease presents differently in different people, ranging from those who are asymptomatic to those who end up with severe symptoms and are put on a ventilator. Some people develop a loss of taste and smell or having a lingering cough and trouble breathing, even after recovery. There is so much that is yet unknown about SARS-CoV-2, also known as COVID-19.

Another concerning discovery that researchers are investigating is whether the virus may play a role in some patients developing type 1 diabetes. A recent study found that some people who did not previously have a diabetes diagnosis are experiencing type 1 diabetes. Though more research is needed, researchers are questioning whether the virus triggers an autoimmune response that damages or destroys insulin-producing pancreatic beta cells.

There have been numerous patients who have presented with hyperglycemia, but this could also be due to the stress put on their body by the disease, as well as steroids used to promote recovery. In some patients, blood sugar issues resolved on their own, not resulting in type 1 diabetes, whereas others had a lasting effect. It is important to follow up after recovery to see if blood sugar management problems still exist and if there is the possibility that type 1 diabetes has developed.

These are still preliminary studies, so researchers cannot say for certain whether COVID-19 may cause type 1 diabetes in some people, but it is a possibility that they are continuing to investigate. Diabetes Research Connection (DRC) is interested to see how this study evolves moving forward and what it could mean for the type 1 diabetes community. The DRC is committed to providing critical funding to support type 1 diabetes research, though was not involved with this study. Learn more about current projects and how to help by visiting https://diabetesresearchconnection.org.

Learn More +

A New Approach to Treating Diabetes and Its Effects

A New Approach to Treating Diabetes and Its Effects

For decades, researchers have been studying cellular changes in the body that contribute to the development of diabetes. They have created a wide array of treatment options to help manage the effects and minimize complications. As they gain a better understanding of the causes of diabetes, they have also made advancements toward curing or preventing the disease. Each therapeutic modality works slightly differently.

A recent study has found that a new drug may hold promising results when it comes to combatting both type 1 and type 2 diabetes. This drug has been 18 years in the making and still has a way to go, but it has shown great potential in current mouse models as well as isolated human islets.

The drug, SRI-37330, is administered orally and affects both insulin and glucagon production in the pancreas and liver. In individuals with type 1 diabetes, the body does not produce enough insulin to effectively manage blood sugar while releasing too much glucagon which can contribute to hyperglycemia. SRI-37330 may help control hyperglycemia, hyperglucagonemia, excessive glucose production by the liver, and fatty liver, which are all significant issues when it comes to diabetes.

Lead researcher Dr. Anath Shalev and her team have spent nearly two decades studying diabetes and its potential causes. This led them to identify a key protein, TXNIP, which can have detrimental effects on islet function and survival. SRI-37330 has the ability to inhibit TXNIP signaling and expression without negatively impacting other genes or processes.

According to their research, not only did the drug help protect mouse models from developing type 1 diabetes, it controlled blood glucose levels more effectively than metformin and empagliflozin, two oral anti-diabetic drugs commonly used today. SRI-37330 helped to decrease glucagon production and release by pancreatic islets and the liver without having the countereffect of increasing hypoglycemia liability in the mice.

One result that researchers did not anticipate was the ability of SRI-37330 to “dramatically improve the severe fatty liver observed in obese diabetic db/db mice.” This opens the door for more studies to determine whether the drug could be used as a potential treatment for non-alcoholic fatty liver disease as well.

Overall, researchers concluded that SRI-37330 is “orally bioavailable, has a favorable safety profile and inhibits TXNIP expression and signally in mouse and human islets, inhibits glucagon secretion and function, lowers hepatic glucose production and hepatic steatosis, and exhibits strong anti-diabetic effects in mouse models of Type 1 and Type 2 diabetes.”

It is important to note that mouse models do not always translate the same in human models. A drug that is effective at treating induced diabetes in mice may not have the same efficacy in humans. More research is needed to see how SRI-37330 would work in human clinical trials and not just isolated human islets or mouse models. However, this drug is an encouraging finding in the field and one that may hold significant potential.

The Diabetes Research Connection (DRC) is interested to see how this study progresses moving forward and what it could mean for the treatment and prevention of type 1 diabetes in humans. This type of work is critical in advancing understanding of the disease as well as care and treatment options. The DRC supports early-career scientists pursuing novel research related to type 1 diabetes by providing up to $50K in funding. Learn more about current projects and how to donate by visiting http://diabetesresearchconnection.org

Learn More +
Metabolic Memory

Exploring the Role of Metabolic Memory in Diabetes Complications

Exploring the Role of Metabolic Memory in Diabetes Complications

As the immune system slowly destroys insulin-producing pancreatic beta cells, a hallmark sign of type 1 diabetes, the body has an increasingly difficult time controlling blood glucose levels. These cells are no longer available to naturally secrete insulin in response to rising blood sugar, meaning individuals must control this process manually or through the use of continuous glucose monitors (CGM) and/or insulin pumps.

Poor glycemic control can contribute to a multitude of diabetes complications and health concerns. It is critical for individuals who are newly diagnosed with the disease to learn how to manage their diabetes and keep blood glucose levels within the target range. A recent study found that incidences of poor glycemic control can have a lasting impact, potentially triggering complications later on in life, even if blood sugar is well-managed now.

This occurrence may be due to the body’s metabolic memory. When hyperglycemia occurs, it may lead to DNA methylation or changes in gene expression. These epigenetic changes may be ongoing, lasting for years to come, even though they do not actually alter the person’s genetic code. Researchers at the Diabetes & Metabolism Research Institute at City of Hope analyzed blood samples from more than 500 participants in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) clinical trial involving patients with type 1 diabetes.

They used the samples to profile DNA methylation, then compared that to the participants’ glycemic history and any complications that had developed over the past 18 years. Their findings showed that “prior history of hyperglycemia may induce persistent DNA methylation changes in blood and stem cells at key loci, which are epigenetically retained in certain cells to facilitate metabolic memory, likely through modifying enhancer activity at nearby genes.”

By matching these key factors, researchers may be able to uncover biomarkers that could help predict the risk of complications in the future. Recognizing signs early on could help initiate interventions to reduce complications or prevent the progression of these issues. There is still a lot that researchers do not yet understand about metabolic memory, but this is a start. While the research team at City of Hope is currently looking at DNA methylation and metabolic memory as it relates to retinopathy and nephropathy complications, they would like to expand this to include other regions where complications can occur through whole-genome bisulfite sequencing.

In the past, it was more difficult for individuals with type 1 diabetes to maintain glycemic control following diagnosis due to inferior technology, but over the years, technology has greatly improved. This has allowed individuals to minimize complications by using devices that have empowered them to improve their care and better manage their blood glucose levels. These advancements have also helped people with more recent diagnoses achieve better glycemic control earlier on, which may impact metabolic memory and the risk of future complications.

The Diabetes Research Connection is interested to see how this study advances understanding of metabolic memory and the role of DNA methylation in diabetes management. Developing complications is an ongoing concern for individuals living with T1D. The DRC is committed to providing funding for early-career scientists pursuing novel research studies focused on prevention, treatment, and a cure for the disease, as well as improving quality of life and minimizing complications. Check out current projects and how to support these efforts by visiting https://diabetesresearchconnection.org.

Learn More +
Genetics in T1D

Digging Deeper into the Role of Genetics in Type 1 Diabetes

Digging Deeper into the Role of Genetics in Type 1 Diabetes

Type 1 diabetes is a complex disease. While researchers know what it does to the body, they are still unclear on exactly why this happen and what triggers this response. Advances in genetic testing have led scientists to identify more than 50 genome regions that may be associated with type 1 diabetes. It is clear that there is not a single gene responsible for this disease, but rather many that all play a part.

In addition, researchers have determined that genetics are not the sole determinant of whether an individual develops type 1 diabetes (T1D); environmental factors are also responsible. This makes it even more challenging to pinpoint what causes T1D and who is most at risk. However, the more scientists understand about both the genetic and environmental causes, the closer they can get to potentially preventing the disease. This is critical because there has been a nearly 30% increase in Americans diagnosed with T1D since 2017 according to the CDC’s National Diabetes Statistics Report.

Type 1 diabetes can run in families, and having a first-degree family member with the disease can put individuals at greater risk. Researchers have identified two genes in particular that are of interest – HLA-DRB1 and HLA-DQB1 – which are both located on the human leukocyte antigen (HLA) complex on chromosome 6p21. Individuals who have both of these genes account for about 40% of T1D cases, but just because someone has both genes does not necessarily mean they will develop T1D. Likewise, there are many people who do not have these two genes who go on to be diagnosed with the disease. In twin studies, if one twin had T1D, only about 50% of co-twins developed it as well, demonstrating that it is not solely genetic (nor solely environmental).

Another interesting finding was that children were at greater risk of islet autoimmunity if their father or a sibling had T1D, as opposed to if their mother had it. Furthermore, the study showed that “children with a second-degree relative with type 2 diabetes showed significantly delayed progression from islet autoimmunity to clinical type 1 diabetes vs. children without such relatives.” This data was collected through The Environmental Determinants of Diabetes in the Young (TEDDY) study, which includes children from the United States, Finland, Germany, and Sweden.

These types of studies have made researchers re-evaluate the potential risk factors for the disease and how to effectively predict susceptibility. They have been trying to fine-tune an approved genetic risk score assessment to include more recent data regarding islet autoantibodies, age, and metabolic factors used to track disease progression. Calculating a genetic risk score that encompasses many different pieces of information and parameters may help researchers improve predictive modeling. In turn, this may help with prevention efforts.

There are a lot of different factors that may contribute to the development of T1D, and all of this has helped researchers generate more focused studies to support prevention. The Diabetes Research Connection (DRC) has raised funds for numerous early-career scientists pursuing research in this area, but more funding and research are needed to keep moving forward. As new cases of type 1 diabetes continue to rise, there has been a greater push for prediction and prevention efforts. Learn more about current DRC projects and how to help by visiting https://diabetesresearchconnection.org.

Learn More +
Gut Microbiome

Examining Gut Microbiome Differences

Examining Gut Microbiome Differences in Individuals with Type 1 Diabetes

The composition of gut bacteria – both good and bad – differs in everyone. Each person has their own makeup dependent upon diet, environment, geographical location, and other factors. In an effort to better understand potential risk factors for type 1 diabetes, researchers are taking a closer look at the role gut microbiomes may play.

The way that the body responds to various bacteria may influence autoimmune responses such as the one that triggers the destruction of insulin-producing beta cells and leads to the development of type 1 diabetes (T1D). According to researchers, “gut microbiota functions like an endocrine organ.” This organ-like structure is one that scientists still have a lot to learn about.

A recent study compared the gut microbiomes of 31 children who had recently been diagnosed with T1D and 25 healthy controls without the disease. None of the participants had gastrointestinal issues or had taken probiotics or antibiotics within one month prior to the study. A brief medical history was taken in addition to measuring C peptide levels. The control group provided fecal samples as well.

Data were analyzed using the MicrobiomeAnalyst tool in combination with two machine learning algorithms. The results showed that the children who had been recently diagnosed with T1D had “significantly higher relative abundance” of seven key taxa compared to the healthy children. In addition, the relative abundance of 5 other taxa was notably lower than in the control group. There was also a negative correlation between multiple taxa and the presence of anti-insulin autoantibodies.

Overall, the researchers determined that “our data showed that controls had higher alpha diversity than children with T1D.” However, it is important to note that they also concluded that “it is currently not possible to clearly state if gut microbiota diversity represents a cause or a consequence of autoimmunity in patients with T1D.” More research is necessary to determine if controlling or altering gut microbiota may be an effective method of preventing or treating T1D.

Studies like these are essential for building a stronger understanding of how T1D may develop, as well as how it impacts the body. Prevention is an area of interest that continues to grow and where more funding is needed. Though not involved with this study, the Diabetes Research Connection (DRC) provides critical funding to a wide range of projects led by early-career scientists, including those focused on prevention. It will continue to allocate donations to this area as well as others related to the treatment, management, and cure of type 1 diabetes. Learn more about current projects and how to support these efforts by visiting https://diabetesresearchconnection.org.

Learn More +
Nanoparticles

Leveraging Nanoparticles in Diagnosing and Treating Type 1 Diabetes

Leveraging Nanoparticles in Diagnosing and Treating Type 1 Diabetes

Medical technology has seen significant advancements over the years helping to improve healthcare in many ways. An area of recent focus has been nanotechnology. Researchers have been exploring opportunities to use nanomedicine to expand upon current diagnosis and treatment options for type 1 diabetes, which affects millions of people around the world.

For instance, scientists know that a key marker for type 1 diabetes (T1D) is the destruction of insulin-producing beta cells. But oftentimes these cellular changes are not noticed until they become severe enough that symptoms of high blood sugar are apparent. Being able to identify biomarkers earlier can improve the diagnosis of the disease and allow patients to receive treatment sooner.

A recent study examines the use of nanoparticles to support the diagnosis of T1D as well as treatment options. Pairing the nanoparticle ferumoxytol with current magnetic resonance imaging (MRI) technology may enable healthcare providers to better visualize where there is inflammation within pancreatic islets. These nanoparticles readily accumulate in inflamed islets but then are safely metabolized by the body without any harmful side effects. Inflammation is an early sign of the development of T1D.

In addition, nanoparticles can also be loaded up with various substances such as peptides and injected to specific locations to target key processes like the downregulation of immune cells. This may help slow or prevent the destruction of insulin-producing beta cells. Or, nanotechnology could be used to encapsulate cells or molecules with bioparticles to ward off immune system attacks.

While more research is necessary, there is a great deal of opportunity that may exist for using nanotechnology and nanoparticles in healthcare. It could one day open new doors for the diagnosis and treatment of conditions such as type 1 diabetes or improve existing therapies.

Funding research around T1D is vital. Diabetes Research Connection (DRC) is committed to providing early-career scientists with funding to support novel research studies focused on prevention and management of the disease as well as improving quality of life and reducing complications of T1D. Learn more about current projects and how to support these efforts by visiting https://diabetesresearchconnection.org.

Learn More +
Beta Cells

Enhancing Protection of Insulin-Producing Beta-Cells

Enhancing Protection of Insulin-Producing Beta-Cells

Insulin-producing beta-cells play a critical role in managing blood sugar by automatically releasing insulin in response to increased blood glucose levels. In individuals with type 1 diabetes, the immune system mistakenly attacks and destroys these cells, leaving blood sugar unchecked. Since the body no longer produces insulin on its own, individuals must regulate this process, often with the help of continuous glucose monitors, insulin pumps, and other devices.

For years, researchers have been trying to better understand why the immune system attacks these beta-cells and how they can prevent this process from occurring. A recent study found that the enzyme renalase may play a role. Stress is a key factor in cell destruction, and by inhibiting renalase, cells have greater protection against the effects of endoplasmic reticulum (ER) stress. This inhibiting may help enhance the survival of transplanted pancreatic beta-cells in the treatment of type 1 diabetes, and it may have the ability to help slow progression of the disease at its onset.

Researchers tested these processes on non-obese diabetic (NOD) mouse models as well as human cells. In the mice, the beta-cells that had the functionality of renalase disabled survived better against immune system attacks than fully functional beta-cells. In addition, certain T-cells were less likely to attack the pancreatic beta-cells without renalase function. The same results held true for human cells; they were better protected against ER stress.

Furthermore, the researchers found that there was already an FDA-approved drug that targets an enzyme similar to renalase and is used to treat hypertension called pargyline. They tested pargyline in a small clinical trial to evaluate its effects on pancreatic beta-cells and whether or not it could protect them against ER stress. Their results showed that it had a protective effect on both mouse models and human cells. The next step is to test the drug in human clinical trials.

More research and testing are needed to determine whether this drug could be used to protect against or slow the progression of type 1 diabetes or be used as the starting block for developing a new drug that specifically targets renalase. However, this is a step in the right direction toward improving prevention methods for type 1 diabetes.

Many studies are focused on treatment or potential cures for type 1 diabetes, but more funding is necessary for prevention efforts like the one above. The Diabetes Research Connection, though not involved with this study, supports research across all aspects of type 1 diabetes, including prevention. There are several current projects led by early-career scientists focused on disrupting the onset of T1Dblocking processes that contribute to the development of the disease, and preserving insulin secretion, which can potentially impact prevention efforts if fully funded. Learn more about these projects and how to help by visiting https://diabetesresearchconnection.org.

Learn More +
Dr. Quandt

Detecting Diabetic Retinopathy Using Artificial Intelligence

Detecting Diabetic Retinopathy Using Artificial Intelligence

Managing blood sugar is not the only challenge that individuals with type 1 diabetes (T1D) face. There can be numerous complications that arise from the disease including conditions such as nerve damage, kidney damage, and eye damage. Diabetic retinopathy – or damage to the retinas – is caused by high blood sugar levels, which can weaken blood vessels and cause them to leak or bleed. If left untreated, it can lead to sight loss or even blindness.

To help prevent vision problems, individuals with T1D are encouraged to have a comprehensive dilated eye exam every year to check for issues. One of the challenges that healthcare systems experience is keeping up with evaluating each scan because it comes with a heavy human workload. However, a recent study in the United Kingdom may have found a way to significantly speed up the process without sacrificing the quality of results.

Researchers explored the possibility of using artificial intelligence (AI) to screen images for signs of damage. The screening technology, called EyeArt, was used to assess 120,000 images collected from 30,000 patient scans as part of the Diabetic Eye Screening Programme (DESP). According to the study, “The results showed that the technology has 95.7% accuracy for detecting damage that would require referral to specialist services, but 100% accuracy for moderate to severe retinopathy or serious disease that could lead to vision loss.”

Projections estimate that using AI screening technology could save the National Health Service (NHS) more than £10 million every year on more than 2.2 million screening episodes. It would greatly decrease the demand for human grading of scans and save time. This technology has the ability to be used outside of England as well, resulting in even more cost savings and the opportunity to reduce resource demands while also helping to protect the vision of millions of individuals with T1D. Diabetic retinopathy is treatable if caught early.

The current coronavirus pandemic has caused a backlog in cases, but AI has the potential to help healthcare providers catch up and continue providing quality care to reduce vision loss from diabetes. The technology was independently tested using more than 120,000 real-world patient images, helping to validate its effectiveness and benefits.

Individuals with T1D must be vigilant about their health and undergoing regular screenings to check for potential complications or issues. The use of artificial intelligence is one more way to enhance the quality and efficiency of testing and promote better health. Diabetes Research Connection (DRC) is interested to see how this study evolves, and if more countries will follow suit when it comes to using AI to grade diabetic eye screening images.

It is these types of advancements that help grow our understanding of type 1 diabetes and improve how this condition is treated and managed. The DRC supports these efforts by providing critical funding to early-career scientists pursuing novel research studies focused on T1D. One hundred percent of donations go to the scientists. To learn more about current projects and how to help, visit https://diabetesresearchconnection.org.

Learn More +
Detecting Diabetic Retinopathy Using AI

Enhancing Quality of Life and Time-in-Range Through Automated Insulin Delivery Systems

Automated Insulin Delivery Systems

Type 1 diabetes (T1D) is a condition that must be managed 24 hours a day, seven days a week, 365 days a year. Even with careful management, it can be difficult for patients to stay in range, especially overnight. Many individuals with T1D are awoken during the night by alarms from continuous glucose monitors (CGMs) or other devices because their blood sugar is rising (or dropping) to unsafe levels. That means they must wake up and be alert enough to administer the correct amount of insulin without overtreating.

However, several recent studies have found that the use of automated insulin delivery systems such as hybrid closed-loop systems may help patients better manage their blood glucose levels and reduce the risk of hypoglycemia and hyperglycemia. There are several companies testing out these types of systems, including Medtronic and Insulet.

With a hybrid closed-loop system, individuals spend less time manually controlling their diabetes management. A sensor tracks their blood glucose levels (or the sensor glucose levels), and then an insulin pump responds and doses an appropriate amount of insulin as needed. This takes a lot of the stress and burden off of individuals, especially overnight.

Studies have shown that these automated systems have also helped individuals increase their time spent in range. A trial involving 157 participants with T1D between the ages of 14 and 75 showed that overall average time-in-range increased from 54% to 73% when using Medtronic’s MiniMed advanced hybrid closed loop (AHCL) system. For even better control, the system has auto basal and auto bolus correction capabilities.

Another Medtronic study comparing 670G and AHCL use in 111 participants between the ages of 14 and 29 showed an increase in time-in-range from 12% to 22% for the 670G and to 32% for the AHCL system. Other automated insulin delivery systems showed similar results.

These findings are encouraging for youth and young adults who often have a harder time maintaining glycemic control. They are able to sleep better at night knowing their blood sugar is being automatically monitored and managed and not having alarms waking them up as often. Even during the day, they can focus more on other activities and less on constantly monitoring their diabetes. The longer individuals wear AHCL devices, they are often able to stay in auto-mode for longer periods of time and require less manual correction.

Technology has come a long way in supporting T1D management, and the Diabetes Research Connection (DRC) is excited to see how much further it goes. As scientists learn more about the disease and are able to fine-tune sensors and algorithms for tracking and managing blood sugar levels and insulin administration, it can lead to a higher quality of life and improved health for individuals living with type 1 diabetes.

The DRC supports early-career scientists in pursuing novel research studies related to T1D by providing critical funding. This helps to keep science moving forward and one day find a cure. To learn more about current projects and how to support these efforts, visit https://diabetesresearchconnection.org.

Learn More +
Managing type 1 diabetes

Speeding Up Insulin Activation for Managing Type 1 Diabetes

Speeding Up Insulin Activation for Managing Type 1 Diabetes

Individuals with type 1 diabetes (T1D) rely on daily insulin injections to effectively manage blood sugar levels and maintain glycemic control. Because blood sugar rises when eating, fast-acting (or rapid-acting) insulin is typically administered just before mealtimes to help curb this spike and begin lowering blood sugar more quickly.

Fast-acting insulin generally begins working within about 15 minutes, peaks within about 90 minutes, and lasts about four hours total. Of course, each person responds differently, and the effects can vary based on numerous factors including the amount of carbohydrates eaten, blood glucose level before eating, injection site, activity, and more.

Researchers have been searching for a way to expedite this process by activating insulin more quickly. Traditional insulin contains a combination of monomers, dimers, and hexamers, with monomers acting the fastest and hexamers taking the longest to break down. A recent study found that using monomeric insulin alone can start decreasing blood glucose levels almost immediately.

The biggest challenge is that these monomers are very unstable and are attracted to the top of the liquid in the vial. Once they hit the air, they aggregate within two hours and become inactive. By using a special polymer blend, scientists were able to create a barrier at the liquid’s surface and keep the monomeric insulin more stable, lasting for more than 24 hours under stress. Commercial insulin only remains stable for about 10 hours. With the addition of the polymer, even commercial insulin increased its duration of stability for up to a month.

The effectiveness of this ultrafast insulin was tested on diabetic pigs, and results showed that the “insulin reached 90 percent of its peak activity within five minutes after the insulin injection. For comparison, the commercial fast-acting insulin began showing significant activity only after 10 minutes. Furthermore, the monomeric insulin activity peaked at about 10 minutes while the commercial insulin required 25 minutes.”

Researchers are planning to apply for approval to test this ultrafast monomeric insulin in human clinical trials, but no trials are planned as of yet. The speed at which this insulin formulation activates as well as the increased stability could improve blood sugar management options for individuals with type 1 diabetes. In addition, this type of insulin could be beneficial in advancing artificial pancreas devices.

Although more testing is needed, this ultrafast insulin could be a game-changer for some individuals with type 1 diabetes if it performs safely and effectively in human trials. Diabetes Research Connection (DRC) is excited to see how these findings continue to unfold and what it could mean for the future of diabetes management.

Though not involved with this study, the DRC plays an active role in supporting research around T1D by providing up to $50K in funding to early-career scientists pursuing novel, peer-reviewed research. To learn more about current projects and how to help, visit https://diabetesresearchconnection.org.

Learn More +
Pancreatic samples

Extending the Viability of Pancreatic Samples for Diabetes Research

Extending the Viability of Pancreatic Samples for Diabetes Research

When conducting research, scientists often try to use living samples so they can better see how various functions play out or how treatments impact cells. However, it can be difficult to keep organ and tissue samples alive for multiple days and reduce deterioration.  This can limit research opportunities and real-time results.

In a recent study, researchers reveal that they have found a way to prolong the life of pancreatic samples from donors allowing them to more effectively observe how beta cells regenerate in real-time. By using a special device that increases oxygenation to the tissue slice, they were able to keep the pancreatic sample alive for nearly two weeks in culture.

With this extended viability, they were able to more closely see not only how beta cells regenerated, but also how they responded when treated with BMP-7, a natural growth factor that may help stimulate the production of insulin-producing beta cells. This could eventually impact scientists’ understanding of type 1 diabetes and options for treating or managing the disease.

Though not involved with this study, the Diabetes Research Connection (DRC) is also committed to enhancing research around type 1 diabetes, including improving prevention and treatment, minimizing complications, and one day finding a cure. The organization is excited to see how the extended preservation of tissue samples may advance research capabilities. To learn more about how the DRC supports early-career scientists and to review current projects, visit https://diabetesresearchconnection.org.

Learn More +
Glycemic control in young people

Concerns About Glycemic Control Among Youth and Young Adults with Type 1 Diabetes

Glycemic Control Among Youth with Type 1 Diabetes

Scientists have come a long way in their understanding of type 1 diabetes and in not only treatments used to manage the disease, but also technology. From continuous glucose monitors and insulin pumps to smart apps, there is a lot of diabetic technology that exists to support patients. But that does not mean that all patients are taking advantage of it or necessarily have access.

In a recent study by SEARCH, individuals with type 1 diabetes between the ages of 10 and 24 showed poorer levels of glycemic control between 2014 and 2019 than the study cohort from 2002 to 2007, despite improvements in treatment and management options. The SEARCH study encompasses more than 20,000 participants from sites in California, Colorado, Ohio, South Carolina, and Washington.

This particular study evaluated data from 6,492 participants and divided them into cohorts from 2002 to 2007, 2008 to 2013, and 2014 to 2019. Information was also categorized based on the duration of diabetes and whether the participant had type 1 diabetes or type 2 diabetes, with the majority of participants having type 1. Researchers then analyzed HbA1c levels over time, adjusting data for “site, age, sex, race, health insurance status and disease duration, both overall and for each duration group.”

Although average HbA1c levels remained consistent across cohorts (8.7% for 2014-2019, 8.9% for 2008-2013, and 8.6% for 2002-2007), when broken down by individual age ranges, those between the ages of 10 and 24 had poorer glycemic control in 2014-2019 than in 2002-2007.

These findings highlight the need for improved access to and use of diabetic technology as well as other interventions to support youth and young adults in enhancing glycemic control. Maintaining tight glycemic control and staying within target ranges can help reduce potential complications from the disease and promote better health.

Diabetes Research Connection (DRC) is committed to advancing research related to T1D and improving prevention, treatment, and management efforts as well as one day finding a cure. Early-career scientists can receive up to $50K in funding to support their peer-reviewed, novel research studies. Learn more about current projects and how to donate by visiting https://diabetesresearchconnection.org.

Learn More +
Islet grafts

Reducing the Need for Systemic Immunosuppression for Islet Grafts

Immunosuppression for Islet Grafts

One of the approaches scientists have been testing for reversing or better controlling type 1 diabetes is the use of allogeneic pancreatic islet transplants. By reintroducing healthy insulin-producing islets, they aim to support the body in naturally regulating and stimulating insulin production to manage blood glucose levels.

A major challenge to this technique, however, is the immune system’s rejection of the graft following transplantation. As with organ transplants, scientists were forced to suppress the immune response in order to keep cells from attacking and destroying the islets. But immunosuppression is not a long-term solution for islet graft transplantation because the potential risks and health effects can outweigh the benefits.

In a recent study, scientists explored the possibility of controlling a localized immune response rather than a systemic one. They designed a synthetic platform that contains microgel made of biomaterials that can deliver checkpoint proteins to regulate cell death.  They used a chemeric streptavidin/programmed cell death-1 (SA-PD-L1) protein. In addition to this protein, they added a short, two-week administration of rapamycin to help the body adjust to the transplant while curbing rejection risk. This approach enabled the sustained survival of allogeneic islet grafts without the need for chronic systemic immunosuppression.

These results demonstrate the potential benefits of using synthetic microgels in combination with immunomodulatory ligands and specific antibodies to manage the immune response to allogeneic pancreatic islet grafts. While additional research is needed, this is a step toward improving therapeutic modalities for treating or potentially reversing type 1 diabetes.

The Diabetes Research Connection (DRC) is interested to see how this study influences future work on islet transplantation as an option for managing type 1 diabetes. The DRC is committed to advancing research within the field by providing critical funding to early-career scientists pursuing novel research studies focused on all aspects of type 1 diabetes. Learn more about current projects and how to help by visiting https://diabetesresearchconnection.org.

Learn More +
Diabetic Patients

Reducing COVID-19 Deaths and Other Complications for Patients Hospitalized with Diabetes

CGM Use In Hospitals

Covid-19 patients who have diabetes experience a higher mortality rate than the general population. A new protocol incorporates the use of continuous glucose monitors (CGM) to track and manage hospital patients’ blood glucose (BG) levels before problems arise. Monitoring and treating glucose levels is critical for patients with diabetes.

 

A clinical study conducted by Scripps Whittier Diabetes Institute (SWDI),  Glucose as the Fifth Vital Sign:  A Randomized Controlled Trial of Continuous Glucose Monitoring in a Non-ICU Setting, was led by the Scripps Whittier Diabetes Institute’s (SWDI) Addie Fortmann, Ph.D. with support from the Diabetes Research Connection (DRC).  The use of CGM in hospitals has the potential to enhance care, reduce the length of stays, and yield improved outcomes, as well as greater patient satisfaction. “The current pandemic environment has greatly accelerated the need to find safe and effective ways to monitor the blood sugar of hospitalized patients without interfering with the necessary and often intensive interventions to treat COVID-19,” said Addie Fortmann, Ph.D., director of the diabetes service line at Scripps and the lead author of the paper. “Our study clearly demonstrates the value of CGM in community hospitals, and it offers a model for other health systems that are looking to use this technology in similar ways.”

 

“DRC’s funding helped to enable Scripps to evaluate effects of CGM in a hospital in a study setting and use the experience to expedite deployment of this important glucose monitoring system when the FDA provided emergency use authorization (EUA) in March of this year,” according to Dr. Alberto Hayek, Scientific Advisor at SWDI, endocrinologist, former T1D researcher at SWDI and UCSD, and President and co-founder of DRC. When individuals are hospitalized, diabetes management is more difficult. Not only are patients dealing with the condition which brought them to the hospital, their blood sugar levels must be continuously monitored, which is very difficult if the patient is on a ventilator or is unconscious.

 

The U.K. National Health Service (NHS) recently published research concluded hospitalized individuals with type 1 diabetes (T1D) are significantly more likely to die from COVID-19 than those with type 2 diabetes (T2D). Preliminary findings, recently published in Diabetes Care, determined a third of people with T1D and COVID-19 in the U.S. experienced diabetic ketoacidosis, from elevated BG, and half experienced hypoglycemia (low BG). Both of these serious conditions can lead to death. Individuals with T1D typically do not produce insulin which presents serious challenges to managing inpatient BG.

 

“Tracking vital signs is routine in many hospitalized patients,” said Athena Philis-Tsimikas, M.D., corporate vice president of Scripps Whittier and the senior author of the report. “This study demonstrates that blood sugar should be considered the fifth vital sign for hospitalized diabetes patients, joining temperature, pulse, respiration and blood pressure, as a potentially crucial metric for delivering the highest quality care.”

A CGM uses a small sensor that is inserted under the skin. It sends a glucose reading via Bluetooth every five minutes to hospital staff so that they can track glucose levels and receive alerts when levels start to rise or fall out of the target range.

 

David Winkler, co-founder of DRC, Chair of the Board, has been living with this autoimmune disease for more than 60 years. He has experienced several challenging hospital stays himself and said, “I strongly endorse Scripps’ exciting new CGM protocol to lessen the serious concerns T1Ds experience in the hospital environment. I applaud Scripps for this material paradigm shift.”

 

The DRC is excited to see how this clinical research will influence hospital protocols nationally to provide enhanced care for patients with diabetes by better managing their blood glucose levels during a hospital stay.

 

Dr. Hayek added, “Our non-profit funds novel T1D research nationally. DRC’s 80 member Scientific Review Committee peer-reviews all grants, including this breakthrough clinical trial.”

 

To learn more about the T1D research projects supported by DRC and how this charity provides hope for treatment and cure of this disease, please visit https://DiabetesResearchConnection.org.

Learn More +
Beta cell function

Advances in Maintaining Beta-Cell Function in Relation to Type 1 Diabetes

Maintaining Beta-Cell Function with T1D

In healthy individuals, pancreatic beta cells respond to glucose levels in the blood and automatically increase or decrease the production and release of insulin. This occurs without individuals ever knowing it happened. But in those with type 1 diabetes (T1D), the immune system mistakenly attacks and destroys insulin-producing beta cells leaving the body unable to naturally regulate blood sugar levels. Instead, individuals must do this on their own by continually monitoring their blood sugar and administering the appropriate amount of insulin via injection or an insulin pump.

However, in the early stages of type 1 diabetes, the pancreas continues to produce insulin, just not enough to keep blood sugar entirely under control. Eventually, this function ceases and individuals become insulin-dependent. Researchers have been investigating potential treatment options to preserve beta-cell function and slow the progression of type 1 diabetes.

A recent study found that the drug golimumab has shown positive results when used to treat individuals newly diagnosed with T1D. When administered every two weeks, this anti-tumor-necrosis-factor (TNF) therapy helped preserve beta-cell function and reduced the amount of additional insulin required by patients.

After 52 weeks of treatment, “41.1% of participants receiving golimumab had an increase or less than 5% decrease in C-peptide compared to only 10.7% in the placebo group.” C-peptide only measures the amount of insulin produced naturally by the pancreas, not injected insulin. Participants receiving the drug were able to maintain better blood sugar control with less insulin and also experienced a decrease in incidences of hypoglycemia where blood sugar was less than 54 mg/dL.

Another treatment that has shown potential is the combination of anti-interleukin (IL)-21 and liraglutide. Participants were randomly assigned to one of four groups: anti-IL-21, liraglutide, anti-IL-21 and liraglutide, or a placebo. Anti-IL-21 targets IL-21-mediated inflammation while liraglutide may reduce cell stress and apoptotic cell death. Treatment was administered every six weeks for 54 weeks.

At the end of the trial, those participants who received the combination treatment showed statistically better beta-cell function than those receiving only liraglutide or the placebo. Beta-cell function was nonsignificant when compared to those receiving only anti-IL-21. In addition, results showed that “combination therapy resulted in the lowest on-treatment glucose levels, although this was not statistically significant, and a significant 32% reduction in insulin dose relative to placebo.”

A third treatment of note was the use of ladarixin, a CXCR1/2 inhibitor that blocks IL-8. Although this therapy did not slow beta-cell function decline during the three-month trial period, it did achieve a statistically significant decline after six months. However, these effects had disappeared again by 12 months. But individuals taking ladarixin did experience better HbA1c levels than those in the placebo group. More research is needed on potential uses and effectiveness of ladarixin.

In addition, researchers also conducted a study involving individuals who were not yet diagnosed with T1D, but who were at high risk due to family history and the presence of at least two autoantibodies. They wanted to see if they could preserve beta-cell function and delay onset of T1D through the use of an Fc receptor-nonbinding anti-CD3 monoclonal antibody called teplizumab.

In this trial, 44 participants received teplizumab, and 32 received a placebo. Treatment was administered for 14 days. The results showed that “the medium time to the diagnosis of type 1 diabetes was 48.4 months in the teplizumab group and 24.4 months in the placebo group.” Overall, T1D was eventually diagnosed in 43% of the teplizumab group and 72% of the placebo group, demonstrating that the treatment may have helped slow the progression of the disease and preserve beta-cell function in individuals at high risk of developing T1D.

All of these therapies are continuing to undergo research to determine their effectiveness and potential use in delaying or preventing the onset of T1D. Diabetes Research Connection (DRC) is dedicated to ensuring that this type of work continues and provides critical funding to early-career scientists pursuing novel, peer-reviewed studies related to type 1 diabetes. Dr. Kevan Herold, a Yale researcher and member of the DRC’s scientific review committee (SRC), was involved in the study regarding teplizumab. Learn more about how the DRC supports scientists and current research projects by visiting https://diabetesresearchconnection.org.

Learn More +
CGM's

Evaluating the Benefits of Continuous Glucose Monitor Use

Benefits of CGM Use

Individuals with type 1 diabetes (T1D) have multiple options for managing their blood sugar, ranging from traditional finger sticks and insulin injections to continuous glucose monitors (CGM) and insulin pumps. Scientists are also continuing to work on more advanced technology including artificial pancreas systems.

CGMs are a popular device for individuals with T1D because they automatically measure and track blood glucose levels and send alerts when they begin to rise or fall too far. They tend to be worn most often by young children and adults ages 26 to 50. However, there are barriers to access for these devices including eligibility requirements and insurance coverage. Furthermore, not all primary care providers are well-versed in how to effectively manage care using these systems.

But recent studies show that CGMs may be especially beneficial for the groups that tend to wear them the least – teens and young adults, and older adults. When these devices are consistently used, they can help to improve glycemic control and reduce instances of hypoglycemia. These factors are essential for continued well-being.

One study followed a group of 153 adolescents and young adults between the ages of 14 and 24 for 26 weeks, then followed up at one year. All of the participants had HbA1c levels of at least 7.5% but not more than 11.0%. The control group contained 79 individuals who did not wear a CGM and conducted finger sticks four times per day to measure their blood glucose levels. The test group contained 74 individuals who wore a CGM and conducted finger sticks twice per day.

At the end of 26 weeks, HbA1c levels for the CGM group dropped from 8.9% to 8.5%, while levels for the control group remained steady at 8.9% throughout. In addition, the CGM group’s time in target glucose range increased from 9 hours per day to 10.3 hours per day, whereas the control group actually dropped from 8.7 hours per day to 8.3 hours per day. However, over time, the CGM group wore their devices less frequently, going from 82% to 68% of participants wearing the device at least five days per week.

At the end of one year, the results remained relatively consistent. Within the CGM group, HbAc1 levels improved slightly from 8.5% to 8.3%, while time in target range decreased slightly from 43% to 41%. There was a noticeable difference when it came to low blood sugar, with the average time spent below 70 mg/dL improving from 49 minutes per day to just 16 minutes per day.

On the other end of the spectrum, adults ages 60 and older also saw positive results when it came to CGM use. This study involved 203 adults split into the same type of test and control groups as the adolescents/young adults. The older adults in the CGM group were more consistent with their device use with 81% wearing it continuously and 89% wearing it at least five days per week.

The focus of this study was on hypoglycemia and time spent with a glucose level below 70 mg/dL. After 26 weeks, the CGM group went from 73 minutes per day to just 39 minutes per day, while the control group saw very minimal change. These rates stayed approximately the same at the one-year mark. In addition, the CGM group spent an average of 2.1 hours per day more in the target blood glucose range than the control group at 26 weeks.

The findings from both studies are encouraging when it comes to helping individuals with T1D to better manage their blood sugar and reduce the risk of hypoglycemia. It is important to educate patients on the benefits of using a CGM while also working to reduce barriers and improve access to this technology.

Though not involved in these studies, the Diabetes Research Connection supports early-career scientists in conducting research related to preventing and curing type 1 diabetes, minimizing complications, and improving quality of life for those living with the disease. From an increasing understanding of how and why the disease develops to improving treatment and management options, scientists are working hard every day. Learn more about current projects funded by the DRC and how to support these efforts by visiting http://diabetesresearchconnection.org.

Learn More +
Researcher looking at a new T1D drug

New Drug May Delay Onset of Type 1 Diabetes

In many patients, there is a slight delay between the time when type 1 diabetes (T1D) is first diagnosed, and when they become dependent on insulin. This is known as the “honeymoon phase” and often lasts for a few months or up to a year. During this time, insulin-producing beta cells continue to function relatively normally and are supported by a small amount of insulin. Over time, these cells stop functioning and patients become insulin-dependent.

A recent study reveals that scientists have developed a breakthrough drug that may delay the onset of clinical T1D by up to three years. The drug, teplizumab, was used to treat patients who were identified at high risk of developing T1D due to the presence of at least two autoantibodies. The drug was administered for two weeks, and following this treatment, insulin secretion rates and C-peptide levels remained higher than for those participants who received a placebo.

During the preliminary trial, patients who took teplizumab showed a delayed onset of T1D of two years, but during the latest phase 2 drug trial, this was extended to three years. Participants who took a placebo continued to experience decreased insulin and C-peptide production as the disease progressed. As a result of these findings, the drug was awarded Breakthrough Therapy Designation by the U.S. Food and Drug Administration (FDA) and PRIority MEdicines (PRIME) Designation by the European Medicines Agency (EMA) in 2019.

More than 18 million people around the world are living with type 1 diabetes, and this drug has the potential to make a positive difference in the lives of millions more who are at-risk for the disease. Diabetes Research Connection (DRC) is excited to see how clinical trials continue to progress for teplizumab and whether it eventually becomes an approved prevention therapy for type 1 diabetes.

The DRC is committed to growing understanding and improving treatment and prevention of type 1 diabetes through providing critical funding for early-career scientists so they can advance and execute their research. Learn more about current projects and how to help by visiting https://diabetesresearchconnection.org.

Learn More +
COVID-19

Managing Type 1 Diabetes and COVID-19

Type 1 Diabetes and COVID-19

As cases of COVID-19 continue to spread across the United States and the globe, scientists are especially interested in how it affects specific populations, such as those with type 1 diabetes (T1D). T1D is considered an underlying health condition and already puts individuals at greater risk when it comes to illness and potential complications.

One positive sign is that preliminary data from a recent study shows that many patients with T1D who also test positive for COVID-19 or have COVID-19-like symptoms are able to effectively manage their recovery at home. Less than 25% of patients were serious enough to require hospital admission. In addition, there were only two reported fatalities, and those individuals had existing comorbidities.

According to the preliminary data, it appears as though patients who have higher A1c levels and poorer glycemic management tend to be more negatively impacted by the disease. In addition, higher body mass index may also be a risk factor. When it comes to age, about 65% of cases were in individuals aged 18 or younger (though many had COVID-19-like symptoms, not confirmed diagnoses), and the average age of all 64 participants was 20.9 years. This is not an issue that is only facing older adults.

According to the study, “Overall, 34.9% of patients were able to manage COVID-19 entirely at home, with 27.3% of the confirmed and 43.3% of the suspected cases able to do so. At the other extreme, 22.2% of patients overall were admitted to the intensive care unit; 30.3% of the confirmed versus 13.3% of suspected cases.” Other patients were seen at an urgent care or hospital but not admitted.

Of those who managed their recovery at home, many received support virtually through telemedicine where they able to consult with endocrinologists and infectious disease specialists. There were also many who did not need to seek care and had their symptoms improve.

Since the initial study was conducted, more patient data has been submitted, and there are now 220 patients as opposed to 64. This data is still being analyzed and reviewed, but at first glance, researchers have found that results continue to be similar to the original group. Researchers are looking at A1c levels, glycemic management, comorbidities, mortality, telemedicine access and use, and more to better understand how COVID-19 is impacting individuals with T1D. They are also digging deeper into risk factors. A new paper reflecting this latest data is in the works.

There are still a lot of unknowns when it comes to COVID-19, but researchers are striving to understand how it may affect more vulnerable populations such as those with type 1 diabetes. The Diabetes Research Connection (DRC) continues to follow these studies and trends to stay up-to-date on the latest information. In addition, the DRC provides critical funding for early career scientists to conduct their own novel, peer-reviewed studies around T1D, whether related to COVID-19 or any other facet of the disease. To learn more and support current projects, visit http://diabetesresearchconnection.org.

Learn More +
Costs of Diabetes

Exploring the High Costs of Diabetes Management

High Costs of Diabetes

Discussions around type 1 diabetes care and affordability often focus on the cost of insulin. While insulin prices can be extremely high and add up quickly depending on how much is needed to effectively control blood sugar levels and what is covered by insurance, this is not the only diabetes-related expense that individuals incur.

Insulin is only one part of managing diabetes. Patients also must pay for the supplies necessary to test and monitor their blood glucose levels and to administer insulin. Many people use continuous glucose monitors and insulin pumps to assist, and even if they don’t, they need syringes and other testing supplies.

A national study of 65,199 patients between the ages of 1 and 64 who had private, employer-sponsored insurance coverage found that the average out-of-pocket cost for managing diabetes was $2,500 a year. But only 18% of that cost was insulin. The rest was other supplies like those aforementioned. Furthermore, families with children who had type 1 diabetes were more likely to use CGMs and insulin pumps to help manage their child’s condition, and their annual out-of-pocket costs exceeded those of adults at $823 versus $445 respectively.

While steps have been taken to reduce the cost of insulin in recent years, and especially during the coronavirus pandemic, not as much has been done to improve the affordability and access of other diabetes-related supplies. CGMs and insulin pumps can play an integral role in helping patients better manage their diabetes and reduce complications, especially for children; in turn, this may help decrease additional medical expenses.

More focus is needed on the overall costs of diabetes management and how to better support patients in affording the care they need for improved health. The Diabetes Research Connection (DRC) stays abreast of the latest changes in the industry and advancements in research and treatment to help individuals with type 1 diabetes. Scientists are always working on ways to improve care and reduce the burden of the disease, and the DRC provides critical funding for these efforts. Learn more about current projects and how to support early-career scientists by visiting https://diabetesresearchconnection.org.

Learn More +
COVID-19 testing

COVID-19 Symptoms in Individuals with Type 1 Diabetes

COVID-19 Testing

COVID-19 has taken our country by storm, and it is affecting individuals of all ages. No one is immune, and unfortunately, individuals with underlying health conditions tend to be at higher risk for complications. People with type 1 diabetes are already more severely affected by infections than individuals without the disease, and therefore they may be at higher risk for contracting COVID-19 and having poorer health outcomes.

A recent study looked at a group of 64 people with type 1 diabetes, 33 of whom had confirmed cases of COVID-19, and 31 of whom had COVID-19-like symptoms but no confirmed diagnosis. The median HbA1c levels were 8.5% and 8% respectively, and the average age was 24.8 years in the confirmed COVID-19 group and 16.8 years in the COVID-19-like symptom group.

Participants were part of a T1D Exchange Quality Improvement Collaborative (T1DX-QI) study and completed a 33-item questionnaire about their health and symptoms. They all had one or more symptoms that aligned with the Centers for Disease Control and Prevention’s (CDC) symptom profile for COVID-19.

The results showed that for both groups, high blood glucose, fever, and dry cough were the top three symptoms. Diabetic ketoacidosis (DKA) was reported in 45.5% of participants who tested positive for COVID-19 and 13.3% of those with COVID-19-like symptoms. This was a small study using data collected up to May 5, 2020. Additional research is needed to better track results as more is learned about the disease and its impact on individuals with type 1 diabetes. Also, since the average age of participants was teenagers and young adults and type 1 diabetes tends to develop in childhood, conducting pediatrics studies could also be beneficial to learn more.

As researchers continue to study COVID-19 and individuals with type 1 diabetes, they can better understand risk factors, complications, and therapeutic treatment options to deal with this novel coronavirus. The Diabetes Research Connection (DRC) is an organization dedicated to funding research around type 1 diabetes and will continue to stay abreast of the latest findings in regard to T1D and COVID-19. To learn more about the work conducted through the DRC and support these efforts, visit http://diabetesresearchconnection.org.

Learn More +
insulin-producing

Protecting Insulin-Producing Islets Through Cell Editing

Protecting Insulin-Producing Islets Through Cell Editing

A hallmark of type 1 diabetes is the destruction of insulin-producing beta cells in the pancreas. These cells are crucial for producing and releasing insulin in response to rising blood glucose levels. Without them, glucose levels go unregulated and can become potentially fatal. Individuals with type 1 diabetes must be vigilant about testing their own blood sugar and administering insulin via syringe or an insulin pump as necessary.

However, a recent study aims to transform diabetes management in children with type 1 diabetes by using cell editing to produce healthy, functioning T cells that would intervene in the destruction of insulin-producing beta cells. Effector T cells and regulatory T cells (Treg) work together to balance the body’s immune response. When effector T cells attack, regulatory T cells keep them in check and limit the damage. But in individuals with type 1 diabetes, regulatory T cells do not function normally.

Researchers at Seattle Children’s Research Institute’s Center for Immunity and Immunotherapies and the Benaroya Research Institute at Virginia Mason (BRI) have discovered a way to edit patients’ T cells so that they function like regulatory T cells and protect pancreatic islet cells. Through gene editing, they turned on the FOXP3 gene in the cells and attached a T-cell receptor to make them antigen-specific to pancreatic cells.

According to Dr. Jane Buckner, president of BRI and co-investigator of the study, “We want to identify T-cell receptors that will create engineered Treg that will go on to and protect the pancreas. This type of therapy could then be used to stop the destruction of cells that produce insulin in the pancreas to slow the progression and ultimately prevent type 1 diabetes.”

The team recently received additional funding and is moving toward gaining approval to start a first-in-human clinical trial at Seattle Children’s. There are currently no other laboratories in the world conducting this same type of experimental therapy. The engineered cells have been tested in animal models and tissue cultures with positive results, but this would be the first human testing.

Diabetes Research Connection (DRC), though not involved in this study, is excited to see how the study advances and if human clinical trials are approved. This could be a major step forward in treatment and prevention options when it comes to type 1 diabetes. The DRC is committed to supporting these types of efforts and provides critical funding to early-career scientists pursuing novel, peer-reviewed research around type 1 diabetes. To contribute to these efforts and learn more about current studies, visit http://diabetesresearchconnection.org.

Learn More +
Research Study for type 1 diabetes

Proactively Identifying Type 1 Diabetes

Identifying Type 1 Diabetes Development

Type 1 diabetes develops when the body mistakenly attacks and destroys insulin-producing beta cells. As the number of cells depletes, the body is unable to adequately control blood sugar levels. Researchers have been striving to find a way to prevent this destruction from occurring or to find a way to replace these cells so that the body can once again manage its own blood sugar.

A recent study took a closer look at exactly when this transformation begins to take place and beta cells begin dying off. They found that in many participants, the decline started at least six months prior to when patients would meet clinical requirements for a type 1 diabetes diagnosis. Diagnostic thresholds are currently a “fasting glucose of ≥126 mg/mL or 2-hour glucose of ≥200 mg/dL.”

The study involved 80 patients split into three categories: younger than age 11, ages 11 to 20, and older than age 20. All participants were first- or second-degree relatives of someone with type 1 diabetes and were diagnosed themselves while undergoing oral glucose tolerance tests (OGTTs) every six months. The results showed that across all age groups, C-peptide levels started declining around 12 months before diagnosis but showed the most significant changes in function in the 6 months prior to and 12 months following diagnosis.

By tracking these changes in individuals who are considered at-risk of developing type 1 diabetes, doctors may be able to catch declining beta-cell function early on and intervene with treatment before patients reach diagnostic thresholds for the disease. This could potentially be a way to prevent or slow the onset of type 1 diabetes through proactive immunotherapy.

More research is needed to further explore these findings and expand them to a larger group of participants. However, it provides researchers with insight on when type 1 diabetes may begin to develop and some changes to focus on. Diabetes Research Connection (DRC), though not involved with this study, supports early-career scientists in pursuing novel research studies around type 1 diabetes to help advance prevention and treatment efforts as well as minimizing complications, improving quality of life, and finding a cure. Learn more about current studies and how to support these projects by visiting https://diabetesresearchconnection.org.

Learn More +
Medical Technology

Helping Drive Technology Advancements

Diabetes Patients Are Helping Drive Technology Advancements

Managing type 1 diabetes is an around-the-clock job. Patients must always be aware of what their blood sugar level is, whether it is trending up or down, whether or not to administer insulin, and if they do need insulin, how much. While there have been many advancements in technology to help with monitoring and insulin administration, the development and approval process is often long and drawn out. There are a limited number of devices approved by the government for use.

Patients with type 1 diabetes have begun taking their health into their own hands and improving treatment options. There are free directions online for how patients can connect their continuous glucose monitor (CGM) and their insulin pump with their smartphone to create a closed-loop system that tracks their blood glucose and automatically administers insulin as necessary. This type of artificial pancreas is something that researchers and pharmaceutical companies have been working on for years, but to date, there is only one commercially available closed-loop system available for use in Canada.

Jonathan Garfinkel, a Ph.D. candidate in the Faculty of Arts at the University of Alberta, took his chances and used the patient-created instructions for setting up the closed-loop system two years ago, and it has been life-changing. Previously, he was having a lot of difficulty managing his blood sugar overnight, and it would drop dangerously low. With the closed-loop system, his blood sugar has become much stabler overnight, and he is not tasked with regularly doing finger pricks and figuring out insulin dosing on his own.

These advancements in technology that patients with diabetes are developing have prompted pharmaceutical companies to quicken their own pace when it comes to getting devices created and approved for commercial use. Patients are becoming increasingly more comfortable with technology and relying on smartphones, sensors, and other devices to help them stay abreast of their health.

Garfinkel himself is also working on a project to advance technology for diabetes treatment. He is in the process of developing “a more affordable glucose sensor that would sit on top of the skin, rather than being inserted subcutaneously.” It was a project he began in collaboration with Mojgan Daneshmand, an engineer and Canada Research Chair in Radio Frequency Microsystems for Communication and Sensing, who was unfortunately killed in a plane crash in January 2020. Garfinkel is continuing the work that they started together and was awarded a U of A seed grant to help.

There are so many young researchers with incredible potential who can benefit from funding that will allow them to carry out their plans and see the results. The Diabetes Research Connection provides up to $50K in funding to early-career scientists to empower them in moving forward with their novel research projects focused on type 1 diabetes. These opportunities open doors to improving the prevention, treatment, and management of type 1 diabetes, as well as improving quality of life, minimizing complications, and one day finding a cure. Learn more by visiting https://diabetesresearchconnection.org.

Learn More +

Sleep Disturbances with Type 1 Diabetes

Sleep Disturbances Common with T1D

Type 1 diabetes is a disease that must be monitored around the clock. When children are awake, it is easier to tell when blood sugar may be spiking too high or dropping too low. At night, this is more challenging, and it is essential to continue testing blood sugar levels to stay within the target range and administer insulin as necessary.

Children typically rely on their parents to manage their diabetes and monitor blood sugar, whether done manually or through a continuous glucose monitor (CGM). A recent study found that children who use a CGM often sleep better at night, but it is their parents who have more disturbances in their sleep due to reacting to CGM data.

As part of a larger study, researchers evaluated the sleep quality of 46 parents of children with type 1 diabetes. The children were between the ages of 2 and 5, and some used CGMs while others did not. Parents reported on the time their children went to bed, woke up, and how long they slept. The average was 10.4 hours per night. Also, all 11 families who used CGMs wore accelerometers that tracked their sleep patterns for a minimum of four nights. The accelerometer showed an average of 9.8 hours of sleep per night for children.

According to the study, “Among the full cohort, 63% of parents reported checking their child’s blood glucose levels at least a few nights per week. Parents of children using CGMs reported a higher frequency of nighttime blood glucose monitoring compared with parents of children without a CGM.”

The percentage of parents who experienced sleep disturbances concerning blood glucose monitoring was noticeably higher than the percentage of children, at 78.3% and 17% respectively. Parents of children with CGMs reported higher levels of sleep disturbance, especially when the child’s diabetes was more difficult to manage. Additional research with a larger group of participants across a longer period of time is necessary to better understand the impact of diabetes management on sleep for parents and children.

It is important for physicians to keep in mind not just the impact a CGM or other device could have on the child’s health and quality of life, but also on the parent. Parents benefit from having proper support systems in place and information to help them cope with the challenges of managing their child’s type 1 diabetes.

Diabetes Research Connection, though not involved in this study, is committed to supporting early-career scientists focused on studying type 1 diabetes and ways to improve prevention, treatment, and quality of life, as well as one day finding a cure. One hundred percent of donations go directly to the scientists for their research. To learn more about current projects and how to help, visit https://diabetesresearchconnection.org.

Learn More +

Enhancing Protection for Islets

Enhancing Protection for Islets Following Transplantation

One treatment approach for type 1 diabetes that researchers have been experimenting with and refining for more than 20 years is islet transplantation. The goal is to take insulin-producing islets from cadavers (or another source) and transplant them into individuals with type 1 diabetes so that these cells will thrive and allow the body to begin producing insulin once again.

A common challenge with this approach is protecting the cells from immune system attack or cell death from lack of oxygen. A recent study has found a way to overcome some of these obstacles by encapsulating the islets in a jelly-like substance made of collagen. This helps create a scaffolding that will not initiate an immune response yet contains the islets while allowing them to grow new blood vessels that will ultimately provide them with oxygen. Since this blood vessel regrowth can take time, the researchers also injected the scaffolding with calcium peroxide. As the calcium peroxide breaks down, it releases oxygen which is used to keep the cells alive as they settle in and begin working.

In traditional organ transplantation, the organ is surgically connected to the circulatory system meaning that the organ automatically begins receiving the oxygen and nutrients it needs for survival. Islet transplants do not work this way since the cells are not a solid organ. In addition, the cells are typically injected into the liver rather than the pancreas where they would normally occur. There is a greater risk of the pancreas having a negative reaction and destroying the islets than the liver.

The researchers tested this new bioscaffold in diabetic mice. Some mice received islets on their own, some received islets in the bioscaffold, and some received islets and calcium peroxide in the bioscaffold. The diabetic mice who received the islets and calcium peroxide demonstrated greater blood glucose control over four weeks than the other two groups. The team is now looking at the possibility of injecting the scaffolding with stem cells as well to further enhance islet survival and function.

These types of advancements in treatment are encouraging when it comes to type 1 diabetes. It is expected that the U.S. Food and Drug Administration (FDA) will approve islet transplantation as a valid treatment for T1D, rather than an experimental treatment, this year. This could increase the number of options available to patients for effectively managing the disease.

Diabetes Research Connection continues to stay abreast of changes in the field and provides critical funding for early-career scientists pursuing novel research around T1D. Learn more about current projects and how to support these efforts by visiting https://diabetesresearchconnection.org.

Learn More +

Reduced Out-of-Pocket Insulin Costs for Seniors Through Medicare

Out-of-Pocket Insulin Costs for Seniors

The cost of buying insulin can quickly add up, but this medication is life-sustaining for individuals with type 1 diabetes. Many seniors are on a fixed income, and some may struggle to afford the out-of-pocket costs for insulin, which can lead to rationing their supply. This can be incredibly dangerous to their health.

The Centers for Medicare & Medicaid Services (CMS) recently announced that it would implement measures to help curb these costs for seniors. Many Medicare Part D prescription drug plans and Medicare Advantage plans with prescription drug coverage will now be offering lower insulin costs to seniors, capping the copay at $35 for a month’s supply. This is part of the new Part D Senior Savings Model and will cover “both pen and vial dosage forms for rapid-acting, short-acting, intermediate-acting, and long-acting insulins.”

Insulin manufacturers and Part D sponsors are working together to offer this market-based solution that enables them to provide deeper discounts to seniors and fixed, predictable copays in the coverage gap. According to CMS, “beneficiaries who use insulin and join a plan participating in the model could see an average out-of-pocket savings of $446, or 66 percent, for their insulins, funded in part by manufacturers paying an estimated additional $250 million of discounts over the five years of the model.”

Seniors will be able to go on to the CMS website and compare their prescription drug plan options to find a participating sponsor and plan that fits their needs. Enrollment would begin in the fall for coverage starting on January 1, 2021. There have also been numerous actions that have been taken in response to COVID-19 to support individuals with type 1 diabetes in accessing and affording insulin.

It is encouraging to see drug manufacturers and insurance companies making changes to improve access and affordability of life-sustaining medications such as insulin. Diabetes Research Connection (DRC) will continue to stay abreast of these trends and how they impact diabetes management. DRC provides critical funding for researchers focused on type 1 diabetes to find a cure and improve prevention and treatment options as well as the quality of life. To learn more, visit https://diabetesresearchconnection.org.

Learn More +

Preserving Endogenous Insulin Production

Preserving Endogenous Insulin Production in Newly Diagnosed Type 1 Diabetes Patients

A hallmark of type 1 diabetes is the body loses its ability to naturally produce enough (or any) insulin to effectively manage blood glucose levels. This is due to the mistaken destruction of insulin-producing beta cells by the immune system, a process that researchers are continually learning more about. In many cases, when type 1 diabetes (T1D) is first diagnosed, there is a short window of time (up to about six months) where the body still creates insulin, but not enough to meet demand.

A recent study explored a new way to try to preserve endogenous insulin production and reduce the amount of insulin newly diagnosed patients required. The study involved 84 patients ages 6 to 21 who had been diagnosed with T1D within 100 days of the start of the trial. Approximately two-thirds of participants were given the drug golimumab, while the other one-third received a placebo. Golimumab is an anti-tumor-necrosis-factor (TNF) therapy that is already approved by the Food and Drug Administration (FDA) for the treatment of rheumatoid arthritis, ulcerative colitis, and other autoimmune conditions. It has not yet been approved for use in patients with T1D.

The patients who received golimumab self-administered the drug via injection every two weeks. Results showed that these patients achieved markedly better glycemic control that patients receiving the placebo. After 52 weeks of treatment, “41.4% of participants receiving golimumab had an increase or less than 5% decrease in C-peptide compared to only 10.7% in the placebo group.”

Furthermore, patients who were still in the “honeymoon phase” of their diabetes, or the first 3-6 months after diagnosis where there is still some endogenous insulin production and not as much injected insulin is needed, also showed improvement once transitioning out this phase and continuing to take golimumab. Those patients showed a smaller increase in injected insulin than the placebo group requiring just 0.07 units per kilogram more per day versus 0.24 units per kilogram per day respectively. Another notable improvement is that patients between the ages of 6 and 18 experienced 36% fewer episodes of level 2 hypoglycemia, a condition that can be potentially life-threatening and negatively impact the quality of life.

Since golimumab is already FDA-approved for other conditions, these phase 2 study results play an important role in moving the process forward to show that it may be an effective treatment for T1D as well. This therapy may be able to help newly diagnosed patients retain some of their body’s natural insulin-producing abilities and decrease the amount of injected insulin needed to maintain good glycemic control.

Golimumab may become another option for patients with type 1 diabetes in the future and change how the disease is managed when caught and treated early on. It is encouraging to see new ways to preserve beta-cell function. Diabetes Research Connection (DRC) is interested to see how this study unfolds and whether golimumab is approved for the treatment of type 1 diabetes.

Although not involved in this study, DRC supports early-career scientists in pursuing studies like these and other projects related to preventing and curing T1D as well as minimizing complications and improving the quality of life for individuals living with the disease. Scientists can receive up to $50K in funding to advance their research. To learn more about current projects and support these efforts, visit https://diabetesresearchconnection.org.

Learn More +
Pancreatic beta cell regeneration

Examining Pancreatic Beta Cell Regeneration Processes

Researchers often use cell cultures and tissue slices to study the function and processes of various cells. One of the challenges of this approach, however, is the viability of these samples. For instance, pancreatic tissue slices typically show significant cell death after less than 24 hours due to poor oxygenation. This means that only short-term studies are possible, using samples while they are most viable and representative of the integrity of the native organ.

But, researchers are looking to change that. In a recent study, scientists altered how human pancreatic slices (HPSs) are cultured and managed to preserve function for 10 days or more. This is significant when it comes to being able to conduct longer-term longitudinal studies. Studies were also conducted on tissue samples from non-transgenic mice.

Traditionally, HPSs are preserved in standard transwell dishes. In this model, tissue is placed on top of a liquid-permeable membrane and surrounded with an air-liquid medium. However, oxygenation begins to decrease within several hours, and signs of anoxia appear. A new approach uses perfluorocarbon (PFC)-based dishes. This model places tissue atop a liquid-impermeable membrane providing direct contact with oxygen. An air-liquid medium also surrounds the slice. A variety of testing shows that PFC-based cultures have improved oxygenation and lower levels of anoxia.

In turn, this allowed scientists to more effectively study pancreatic beta-cell regeneration processes. HPSs retain “near-intact cytoarchitecture” of the organ in its native state in the body. Combined with the longer-term viability of the samples in the PFC-based setting, researchers were able to focus in on how and where beta cells were regenerating. They used HPSs from non-diabetic individuals as well as those with type 2 diabetes to enhance their understanding of how to stimulate this regeneration and improve insulin production.

When samples were left to rest for 24 hours to reduce the impact of stress from slicing and then treated with Bone morphogenetic protein 7 (BMP-7) proteins, scientists found that they showed higher levels of beta-cell regeneration than controls that were not treated with BMP-7. Much of this cell development occurred in regions corresponding to pancreatic ducts. Some new cells emerged from existing beta cells, while others transitioned from alpha to beta cells.

Improved oxygenation methods are changing how scientists are able to interact with HPSs and the types of testing they are able to conduct. According to the study, “Our goal in refining the conditions for the long-term survival of HPS was to allow for the real-time detection and quantification of endocrine cell regeneration.” While more in-depth and extensive studies are needed, these findings may lead the way toward improved understanding of the pathology of pancreatic beta-cell regeneration and new treatment options for individuals with type 1 diabetes.

Diabetes Research Connection (DRC) is committed to supporting these types of advancements and efforts by providing critical funding to early-career scientists pursuing novel, peer-reviewed research related to type 1 diabetes. With adequate funding, scientists are able to bring their ideas to life and contribute to not only greater understanding of the disease, but improved methods and therapies for diagnosing, treating, managing, and eventually curing type 1 diabetes. Learn more about current projects and support these efforts by visiting https://diabetesresearchconnection.org.

 

Learn More +

Could Insulin Management be Controlled with an App?

Determining the appropriate amount of insulin to administer in response to drops in blood sugar can be challenging, but it is something that individuals with type 1 diabetes must do daily in order to manage their health. If left untreated, low blood sugar (or hypoglycemia) can be potentially fatal.

A team of researchers and physicians at Oregon Health & Science University (OHSU) are looking to improve diabetes management through a new app called DailyDose. While there are similar types of apps that exist, what sets DailyDose apart is that has demonstrated statistically relevant outcomes through multiple clinical studies. The AI algorithm for the app was originally developed entirely through a mathematical simulator, but when real-world data was used, the recommendations generated by the app aligned with recommendations provided by physicians, or were still considered safe, more than 99% of the time. In addition, improved glucose control was achieved. This was determined after 100 weeks of testing conducted in four-week trials.

Each trial involved 16 patients with type 1 diabetes and combined information from a continuous glucose monitor or wireless insulin pen with the app. Nearly 68% of the time, the recommendations generated agreed with those of physicians.

These findings are important because they show that the app may be effective in supporting individuals with type 1 diabetes in reducing risk of hypoglycemia by better managing insulin administration and blood glucose levels between appointments with their endocrinologist. Larger clinical trials are needed over longer periods of time to further determine the accuracy and effectiveness of the app in relation to other treatment strategies.

Technology is becoming increasingly more popular and advanced in terms of managing type 1 diabetes. There are numerous devices and apps already available and more in the works. This gives individuals with type 1 diabetes a wider variety of options in order to determine what works best for their needs and lifestyle.

Though not involved with this study, the Diabetes Research Connection (DRC) strives to continue growing understanding of type 1 diabetes and improving prevention and treatment methods as well as one day finding a cure. Early-career scientists can receive critical funding through the DRC to pursue novel research studies around T1D. Learn more about current projects and how to support these efforts at http://diabetesresearchconnection.org.

Learn More +

Could Advancements in Gene Editing Reverse Type 1 Diabetes?

Gene therapy is not a new approach when it comes to treating type 1 diabetes. Scientists have been experimenting with many different options in order to stimulate the body to once again produce its own insulin and reduce or eliminate the need for insulin injections. However, some of the problems that scientists often encounter when introducing new cells into the body are that patients typically require immunosuppressant drugs which can lead to a variety of complications, the body rejects the cells over time, or the cells stop working. Finding a long-term, effective solution has been challenging.

Scientists are making strides in their efforts, though. A recent study examined the potential of using the gene-editing tool CRISPR to correct genetic mutations and create induced pluripotent stem cells that can be transformed into pancreatic beta cells. In mouse models, after the new cells were injected, mice achieved normoglycemia within a week and maintained this status for at least six months.

This approach has not yet been tested in humans, however, because it comes with its own set of challenges. First, the study was done using cells from patients with Wolfram syndrome, a condition that causes diabetes and deafness. This condition can be pinpointed to a single genetic mutation, whereas type 1 diabetes cannot. Type 1 diabetes has been tied to multiple gene mutations, as well as environmental factors. Gene-editing would have to be personalized for each individual, which could take a lot of time.

In addition, it could take billions of cells to effectively reverse diabetes in a patient, and generating this massive number of cells could take months, so it could end up being a long process to treat even one person. Plus, scientists are not entirely sure where the best place to transplant these cells is yet. They must find the spot where they will be most beneficial and able to carry out their intended purpose.

Another study using CRISPR technology is being conducted by a different group of researchers and is focused on using stem cells from the human cell line rather than from individual patients. This would make it easier to produce mass quantities of cells in a shorter period of time. It also would not require scientists to correct specific genetic mutations. CRISPR would be used to edit cells to prevent them from being attacked and destroyed by the body’s immune system.

A challenge with these approaches is that there are a lot of questions and regulations when it comes to gene-editing and using CRISPR on human subjects. Clinical trials are still in very early stages. Studies involving induced pluripotent stem cells are also relatively new in the United States. There is still a lot of work, research, and testing that needs to be done before gene-editing therapy could potentially be used on humans.

Diabetes Research Connection (DRC) will continue to follow these advancements and what they could mean for future diabetes treatment. DRC supports early-career scientists in contributing valuable discoveries and information of their own to the field by providing critical research funding. All projects funded by the DRC are focused on the prevention, treatment, and cure of type 1 diabetes, as well as minimizing complications and improving the quality of life for individuals living with the disease. Learn more and support these efforts by visiting https://diabetesresearchconnection.org.

Learn More +

Exploring the Impact of Type 1 Diabetes on COVID-19

For the past several months, the world has been struggling to contain the spread of COVID-19 and effectively treat patients diagnosed with this disease. It is a new strain of coronavirus that researchers continue to learn more about every day. One thing that is known about the virus is that individuals with underlying health conditions are at increased risk of developing severe illness and complications.

One such underlying health condition that researchers are paying closer attention to is type 1 diabetes (T1D). Preliminary research from small studies appear to show that individuals with T1D are at increased risk of poorer health outcomes than those with type 2 diabetes (T2D) or no history of diabetes. A recent study of 64 individuals with T1D and confirmed or suspected COVID-19 in the United States found that “more than 50% of all cases reported hyperglycemia, and nearly one-third of patients experienced DKA.” Both hyperglycemia and diabetic ketoacidosis (DKA) can be life-threatening conditions if not properly treated in time.

Furthermore, research released from the United Kingdom’s National Health Service (NHS) revealed that hospitalized individuals with T1D are significantly more likely to die from COVID-19 than those with T2D. Scientists believe that hyperglycemia may enhance the immune system’s overresponse thereby exacerbating the impact of severe infections.

Being hospitalized can make it more difficult for individuals with T1D to maintain glycemic control because their body is already trying to fight off infection, and they may not have the mental clarity or ability to effectively monitor their own blood sugar. Diabetes Research Connection (DRC) sponsored a study by Addie Fortmann, Ph.D., regarding the use of continuous glucose monitors (CGMs) in hospital settings, which found that these devices were pivotal to glycemic control. As a result, Scripps deployed this technology across all of their hospitals to better support diabetes management.

But not every hospital in the United States allows patients to use their CGM while admitted, and not all staff is adequately trained in diabetes care. This can complicate things for patients struggling with T1D as well as COVID-19 and contribute to poorer health outcomes. Not only are patients fighting against the effects of COVID-19 including fever, shortness of breath, dry cough, nausea, body aches, and fatigue, if their blood sugar should go too high or too low, this can add to more symptoms and complications. In both patients with confirmed and suspected COVID-19 as well as T1D, DKA was the most prevalent adverse outcome.

It is essential that attention is given to managing underlying conditions such as diabetes in order to provide more effective treatment tailored to patient needs. Since 2012, the DRC has been providing critical funding for early-career scientists pursuing novel, peer-reviewed research related to type 1 diabetes. This work is essential to advancing understanding of the disease, improving prevention strategies and treatment options, minimizing complications, enhancing quality of life, and working toward a cure. Learn more about current projects and how to support these efforts by visiting https://diabetesresearchconnection.org.

Learn More +

Taking Steps to Prevent Diabetic Ketoacidosis in Pediatric Patients with Type 1 Diabetes

There are many complications that can occur with type 1 diabetes, but one of the most serious is diabetic ketoacidosis (DKA). When the body does not produce (or have) enough insulin to help convert sugar to energy, it begins breaking down fat and using that as fuel instead. However, this releases acid known as ketones into the bloodstream, in turn leading to DKA when levels become too high.

A recent study found that DKA among newly diagnosed pediatric patients with type 1 diabetes is alarmingly high among patients around the world. During an 11-year study spanning from 2006 to 2016, researchers found that out of 59,000 children who had been diagnosed with T1D, 29.9% presented with DKA at diagnosis. The study examined data from children in Austria, the Czech Republic, Germany, Italy, Luxembourg, Norway, Slovenia, Sweden, Wales, Australia, New Zealand, and the United States.

Of these countries, prevalence rates in Luxembourg and Italy were found to be the highest at 43.8% and 41.2%, respectively, while Sweden and Denmark had the lowest rates at 19.5% and 20.8%, respectively. DKA at diabetes diagnosed increased over the 11-year study in the United States, Australia, and Germany. Overall, DKA tended to impact a higher proportion of females than males, except in Wales.

In order to help reduce risk of DKA at diagnosis, the researchers encourage improved screenings beginning with young children. For example, Bavaria, Germany tests for islet autoantibodies as part of a public health screening for children between the ages of 2 and 5. Studies showed that their prevalence of DKA at diagnosis came in at less than 5%. Increased screenings and education may be beneficial in raising awareness and catching potential problems early on before DKA develops.

Though not involved with this study, the Diabetes Research Connection (DRC) is committed to improving understanding, prevention, and treatment of type 1 diabetes by providing critical funding for novel, peer-reviewed research studies by early-career scientists. Find out how to support these efforts and learn more about current projects by visiting https://diabetesresearchconnection.org.

Learn More +

Managing Blood Sugar During Exercise with Long-Acting Insulin

Engaging in regular physical activity is good for overall health. It helps with weight management, blood pressure, cardiovascular health, blood sugar, and more. Individuals with type 1 diabetes may find exercise helpful in improving insulin sensitivity and reducing the amount of insulin needed following activity. However, this can also be a challenge because they must carefully monitor their blood-glucose levels to ensure that they do not become too low or too high.

A recent study found that combining long-acting insulin (degludec) with the use of an insulin pump can be beneficial for managing glucose levels during and after exercise. Some individuals with T1D prefer to remove their insulin pump during exercise, and by administering degludec before starting exercise, they were able to remain in target range (70-180 mg/dL) for longer periods of time than when just using the insulin pump alone.

The study involved 24 physically active adults who participated in two phases of workouts that included five weeks of high- and moderate-intensity sessions. During one phase, they only used their insulin pump to control their basal insulin needs, and for the second, they used the insulin pump and the degludec. When using the insulin pump alone, they spent an average of 143 minutes (40% of the time) in target range, but when using the degludec, this time in range increased to 230 minutes (64% of the time).

The researchers found that “this was down to a significant 87-minute reduction in time spent in hyperglycemia, with no difference seen for hypoglycemia” as well. In addition, when using the hybrid insulin approach, blood sugar rose just 14.5 mg/dL after 30 minutes following exercise, compared to an 82.9 mg/dL increase using the insulin pump alone.

More than two-thirds of participants found the hybrid insulin regimen useful, and nearly half said they were somewhat or very likely to continue using this approach while exercising in the future. The researchers are looking at moving forward with a larger study to see if these results continue to be significant when more people are involved.

This study shows that there may be more than one effective option for improving glucose control during exercise for individuals with type 1 diabetes. They do not have to rely on the insulin pump alone, and some may find administering degludec beneficial when exercising without their insulin pump.

Diabetes Research Connection (DRC) is interested to see how this study plays out in the future and if more people can benefit from the hybrid insulin regimen while exercising. It is encouraging to see more options become available to help individuals better control their diabetes while improving their health and quality of life. DRC supports early-career scientists in pursuing novel research on type 1 diabetes by providing access to funding. The goal is to one day find a cure while also improving prevention, treatment, and management of the disease. Learn more by visiting http://diabetesresearchconnection.org.

Learn More +

Could Benefits of Early Screening for Type 1 Diabetes Outweigh Costs?

Advances in science have improved the ability to identify warning signs for type 1 diabetes (T1D) early on. For instance, scientists can detect the destruction of insulin-producing beta cells before noticeable signs of diabetes emerge or conditions such as diabetic ketoacidosis (DKA) occur. They have also determined other key changes and factors that may put an individual at increased risk.

A recent study found that conducting health screenings on children can increase awareness regarding their risk of developing T1D, help prevent DKA occurrences, and encourage individuals to take better care of their health to reduce complications and impact of the disease.

Researchers at the Barbara Davis Center for Diabetes at the University of Colorado School of Medicine created the Autoimmunity Screening for Kids (ASK) study to determine if this type of health screening is beneficial. While it can be costly to conduct widespread screenings for children between the ages of 1 and 17, they found that there are a host of benefits such as those mentioned above. In addition, the long-term cost savings can quickly make up for screening expenses because when individuals know their risk and learn how to better manage their T1D, it can reduce complications and associated healthcare costs.

Now they are looking at how to effectively implement screenings, what the practice would look like, what the age schedule for screenings should be, and who would benefit most. Early detection can play an integral role in managing T1D and improving quality (and quantity) of life.

Diabetes research occurs at all stages of the disease, from the time patients are pre-symptomatic to those with the most serious complications. It covers everything from screenings to closed-loop systems for treatment to understanding the cellular and molecular impact of the disease. Diabetes Research Connection is committed to supporting a wide range of T1D research by providing critical funding to early-career scientists. Learn more about current projects and how to help by visiting https://diabetesresearchconnection.org.

Learn More +

Study Affirms Safety and Effectiveness of U.S. Insulin Products

When an individual with type 1 diabetes (T1D) administers insulin to control their blood sugar levels, they want to feel confident that no matter what U.S. retail pharmacy they purchased their insulin from, it will work. Differences in consistency and potency of insulin could have a detrimental impact on patient health and their ability to manage their T1D.

A recent study looked at samples of human and analog insulin products from across manufacturers and found that they were all correctly labeled and contained the expected quantity of active insulin. Since individuals with T1D rely on insulin injections multiple times per day, it can be reassuring to know that the product they are using adheres to how it is labeled.

The study was a joint effort between JDRF, the American Diabetes Association (ADA), and the Leona M. and Harry B. Helmsley Charitable Trust. The study was conducted within a single year, so now the team is looking to expand to a second phase that measures for any variations again, this time looking at “potential seasonal variations in reported insulin activity.”

Diabetes Research Connection (DRC) is proud to see that manufacturers are producing quality insulin products that meet consistency and potency standards. Worrying about the quality of their insulin is not something that individuals with T1D should have to do. The DRC supports early-career scientists in pursuing novel, peer-reviewed research focused on the prevention and cure of type 1 diabetes as well as minimizing complications and improving quality of life for individuals living with the disease. To learn more, visit https://diabetesresearchconnection.org.

Learn More +

Combination Therapy May Help Improve Blood Sugar Management

Maintaining stable blood sugar levels and minimizing complications is a constant challenge for many individuals living with type 1 diabetes. They must always be alert to whether their blood sugar is too low or too high and how much insulin to administer. However, researchers are continually exploring ways to improve blood sugar management by better understanding how diabetes affects the body.

In a recent study, researchers from Stanford University have taken a new approach by combining two FDA-approved drugs and developing a way for them to work in tandem as they naturally do in the body through a single injection. In addition to insulin, individuals with type 1 diabetes (T1D) would also take a drug based on the hormone amylin. This drug is already FDA-approved, but less than 1% of patients with diabetes take it. This could be because they do not want to administer a second shot every time they take insulin. When combined, insulin and the amylin-based drug work together just as they do when naturally occurring in the body. Amylin is produced by the same insulin-producing beta cells in the pancreas.

According to researchers, amylin works in three ways:

“First, it stops another hormone, glucagon, from telling the body to release additional sugar that has been stored in the liver. Second, it produces a sense of “fullness” at mealtimes that reduces food intake. Third, it actually slows the uptake of food by the body, reducing the typical spike in blood sugar after a meal. All three are a boon to diabetes care.”

However, in their current states, insulin and the amylin-based drug are too unstable to combine in one syringe. To combat this problem, the researchers have developed a protective coating that encompasses each molecule individually, allowing them to stably exist together. This molecular wrapper has a Velcro-like feature that “reversibly binds to both insulin and amylin separately, shielding the unstable portion of each molecule from breakdown.” Once administered, the coating dissolves in the bloodstream.

With this protective coating – known as cucurbituril-polyethylene glycol (CB-PEG) – the combination of insulin and the amylin-based drug showed stability for at least 100 hours. This could give it a shelf life that is long enough to be used with an insulin pump. Researchers have tested the combination therapy on diabetic pigs and are working toward gaining approval for human trials. Since both drugs are already FDA-approved, this could help to move things along more quickly.

Diabetes Research Connection (DRC) is excited to see what this could mean for the future of T1D treatment and blood glucose management. This combination therapy could help alleviate some of the challenges that patients face and improve management of the disease. Though not involved with this study, the DRC is committed to supporting research around type 1 diabetes in order to improve diagnosis, treatment, prevention, and the pursuit of a cure. The organization provides critical funding to early-career scientists to advance their research. Learn more about current projects and how to support these efforts by visiting https://diabetesresearchconnection.org.

Learn More +

Glucose-Sensing Neurons Work Together to Manage Blood Sugar

Whereas insulin is necessary to combat high blood glucose levels, a different hormone is necessary to manage low ones: glucagon. This hormone helps to regulate glucose production and absorption bringing glucose levels back into an acceptable range.

A recent study from researchers at Baylor University and other institutions found that there is a specific group of neurons in the brain that may play an integral role in blood sugar regulation and preventing hypoglycemia. Within the ventrolateral subdivision of the ventromedial hypothalamic nucleus region, there are estrogen receptor-alpha neurons that are also glucose-sensing.

What the researchers found particularly interesting was that half the neurons became more active when blood sugar levels were high (glucose-excited), and the other half became more active when blood sugar levels were low (glucose-inhibited). Furthermore, each group of neurons used a different ion channel to regulate neuronal firing activities. However, they both led to the same result – increasing blood glucose levels when they were low – even though they were activating different circuits in the brain. This leads to a perfect balance in managing blood sugar.

The next step in the study is to investigate whether the fact that all of the neurons in this specific group that expressed estrogen receptors play a role in the glucose-sensing process. In turn, this could lead to more gender-specific studies to determine differences in neuronal function when it comes to blood sugar regulation.

One important factor to note is that all of these studies were conducted on hypoglycemic mice. The researchers did not identify whether the process is believed to be the same in humans.

This is another step forward in better understanding how diabetes affects the body, brain, and functioning. Diabetes Research Connection strives to empower early-career scientists in pursuing novel, peer-reviewed studies related to type 1 diabetes by providing up to $50K in funding. Research is focused on the prevention and cure of type 1 diabetes as well as minimizing complications and improving quality of life for individuals living with the disease. Find out how to support these efforts by visiting https://diabetesresearchconnection.org.

Learn More +

Targeting the Effects of Specific Drugs on Pancreatic Islets

The production of insulin and glucagon used to regulate blood sugar levels come from pancreatic islet cells. In individuals with type 1 diabetes, the immune system mistakenly attacks and destroys these cells leaving the body unable to naturally regulate blood sugar. That means that individuals must continuously monitor and manage these levels themselves.

A recent study examined the impact that specific drugs have on pancreatic islet cells and their function. Researchers were able to fine-tune single-cell transcriptomics to remove contamination from RNA molecules that could interfere with results and negatively affect reliability of the data.

Once they had created decontaminated transcriptomes, they tested three different drugs that relate to blood glucose management. They found that one drug, FOXO1, “induces dedifferentiation of both alpha and beta cells,” while the drug artemether “had been found to diminish the function of alpha cells and could induce insulin production in both in vivo and in vitro studies.” They compared these drugs in both human and mouse samples to determine if there were any differences in how the cells responded. One notable difference was that artemether did not have a significant impact on insulin expression in human cells, but in mouse cells, there was reduced insulin expression and overall beta cell identity.

Single-cell analysis of various drugs could help guide future therapeutic treatments for type 1 diabetes as researchers better understand their impact. Targeted therapies have become a greater focus of research as scientists continue to explore T1D at a cellular level.

Diabetes Research Connection (DRC) is interested to see how single-cell sequencing and the ability to decontaminate RNA sequences could affect diabetes research. The organization supports a wide array of T1D-focused studies by providing critical funding to allow early-career scientists to advance their research. To learn more and support these efforts, visit https://diabetesresearchconnection.org.

Learn More +

Examining the Co-Occurrence of Asthma and Type 1 Diabetes

It is not uncommon for individuals to have more than one disease or condition at a time. Oftentimes, there is an underlying link between their development, even if it is not entirely understood. In addition, many conditions run in families, which can be due to genetics or even possibly environmental factors.

A recent study looked at data from more than 1.2 million children in Sweden to see if there was a potential association between asthma and type 1 diabetes. They examined risk both within individuals and within families, comparing information from full siblings, half-siblings (both maternal and paternal), full cousins, and half cousins as well.

According to their results, individuals with asthma were at increased risk of developing type 1 diabetes (T1D), but the presence of T1D did not increase their risk of later developing asthma. In addition, if an individual had either T1D or asthma, their full siblings were at increased risk of developing either disease. Full cousins were also at a greater risk.

Data was obtained from several Swedish registers held by the National Board of Health & Welfare and Statistics Sweden and encompassed 1,284,748 singleton children born in Sweden between January 1, 2001, and December 31, 2013. Of these children, 121,809 had asthma, 3,812 had T1D, and 494 had both diseases. Their findings suggest that there may be shared familiar factors that affect associations ranging from genetics to environment.

Understanding these potential associations may help healthcare providers with recognizing symptoms of either disease earlier on if one has already been diagnosed. It may also influence management or treatment of these diseases. More research is necessary to further explore possible connections between asthma and T1D and what that might mean for future care.

Though not involved in this study, the Diabetes Research Connection (DRC) is continually striving to advance research related to T1D by providing critical funding to early-career scientists for their studies. This can lead to improved diagnosis, treatment, and prevention methods, as well as one day finding a cure. To learn more about current research projects and how to help, visit https://diabetesresearchconnection.org.

Learn More +

Using Saliva to Monitor Blood Glucose Levels

Traditional blood glucose monitoring for type 1 diabetes has involved using finger sticks to draw and test a small droplet of blood. This can leave fingers sore and calloused as testing occurs multiple times throughout the day to keep blood sugar in check. In addition, it requires a variety of supplies, and lancets used to draw blood must be disposed of safely and properly.

A recent study found that there may be a non-invasive method of monitoring blood sugar that is easier to collect and test: saliva. Researchers found that saliva contains numerous biomarkers that could make it a feasible alternative to blood. In addition, testing is conducted using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy rather than the reagents that are necessary when blood is used. That makes saliva a more sustainable and eco-friendly option as well. In early testing, using saliva was 95.2% accurate in monitoring blood sugar.

Regular testing and monitoring of blood sugar is essential for individuals with type 1 diabetes to reduce risk of hypo- or hyperglycemia as well as diabetic ketoacidosis and other complications. However, many people do not enjoy constant finger sticks. Using saliva and ATR-FTIR spectroscopy or other technology could become a non-invasive, less painful option. This process is still in early stages of testing, and more research is needed to determine its efficacy and how exactly it could be used by patients.

Diabetes Research Connection (DRC) is excited to see how this form of blood glucose monitoring evolves moving forward and what it could mean for individuals living with type 1 diabetes. It is another step toward providing more management options and better meeting the needs of individuals with diabetes.

Though not involved with this study, the DRC is committed to providing critical funding for early-career scientists pursuing research related to type 1 diabetes. This could include topics focused on improved diagnosis, treatment, prevention, and management of the disease, as well as minimizing complications, enhancing quality of life, and finding a cure. To learn more and support these efforts, visit https://diabetesresearchconnection.org.

Learn More +

Using Gene Editing as a Potential Type 1 Diabetes Treatment

It has been more than a decade since scientists began experimenting with CRISPR gene-editing technology to alter DNA sequences and gene function. This tool allows scientists to correct mutations or defects in genes and manipulate them to treat or prevent certain diseases. This technology has also been used with crops. Researchers are still exploring this tool’s potential and ethical use, but many studies have been conducted thus far using it in different ways.

A recent study examines the use of CRISPR-Cas9 in the treatment of diabetes. Scientists at Washington University in St. Louis corrected a mutation in the WFS1 gene which causes Wolfram syndrome, of which diabetes is one symptom. Then, they used CRISPR-Cas9 to edit human-induced pluripotent stem cells and target their differentiation into pancreatic beta cells. This creates an abundance of fully functional beta cells to be used in conjunction with gene therapy.

When the altered beta cells were transplanted into diabetic mice, blood glucose levels dropped and glycemic control was maintained for at least six months. Scientists are exploring whether this process can be used to effectively reverse or stop type 1 diabetes by editing a patient’s own beta cells. In addition, the abundance of cells created means that more testing can occur to develop specific medications or therapies to treat the disease.

More research is needed before gene editing can potentially be used as an approved treatment for type 1 diabetes, but researchers continue to learn more. Diabetes Research Connection (DRC) is interested to see what this technology may mean for the future of diabetes treatment and management and how it could evolve. Though not involved with this study, the DRC is committed to supporting research around type 1 diabetes and provides early-career scientists with critical funding for novel, peer-reviewed studies. To learn more about current projects and how to help, visit https://diabetesresearchconnection.org.

Learn More +

Dexcom to Launch Patient Assistance Program to Support Type 1 Diabetes Care

Type 1 diabetes (T1D) does not take a break for a global pandemic, or for anything else. It is a chronic health condition that must be managed 24/7/365. Access to affordable medical and testing supplies is critical for patients. With unemployment skyrocketing as an effect of the coronavirus outbreak, many people have lost their employer-provided healthcare. Without insurance (or income from a steady job), paying for diabetes supplies can become difficult.

In an effort to better support individuals impacted by the loss of insurance due to COVID-19, Dexcom is launching a patient assistance program. The program will provide eligible participants with “two 90-day supply shipments, with each dispatch including one transmitter and three boxes of sensors at just $45 per 90-day shipment” according to the organization.

This will allow patients to continue following their normal management routine without fear of how they will afford their CGM supplies. The program will be rolled out over the next few weeks and last through the duration of the COVID-19 pandemic. U.S. residents who receive state or federal assistance through programs such as Medicare, Medicaid, or VA benefits are not eligible to participate.

Dexcom’s patient assistance program is just one more example of businesses stepping up to support individuals during this time of need. In recent weeks, pharmaceutical companies have also been providing assistance by reducing or limiting out-of-pocket costs for insulin. Diabetes Research Connection (DRC) is glad to see that individuals with T1D are receiving support to ensure their needs are met and their health is effectively managed during these challenging times. Until a cure for diabetes is found, the need for insulin and continuous glucose monitors remains a priority.

DRC continues to work toward finding a cure and improving treatment options by providing critical funding to early-career scientists. Learn more about current projects and how to help by visiting https://diabetesresearchconnection.org.

Learn More +

Targeting Stem Cell-Generated Beta Cells for Type 1 Diabetes Treatment

In developing more effective treatment methods for type 1 diabetes, several approaches have targeted the disease at a cellular level. Scientists know that, on the most basic level, the disease stems from the destruction of insulin-producing beta cells. However, they are unsure exactly what causes the body to mistakenly attack and destroy these cells. There have been many studies looking at how to reintroduce or stimulate these beta cells within the body in order to produce insulin naturally, but this is a difficult process and one that is hard to sustain.

A recent study may have found a way to improve the number and quality of beta cells produced for cell replacement therapy. The differentiation of human pluripotent stem cells into targeted beta cells is a long, complex process that can take weeks. Even after the process is finished, there is an assortment of cells that have been produced because not all cells differentiate as desired. In addition, not all beta cells are fully functional.

Researchers found that by adding CD77, a monoclonal antibody, they can better control the differentiation of cells into specific pancreatic progenitors. Having these pancreatic progenitors present at the start of the differentiation process may lead to higher quality beta cells that are more responsive to glucose and have improved insulin secretion abilities. In addition, it may help direct differentiation meaning a more homogenous group of cells is created, which is beneficial for cell replacement therapy. Having more of the desired type of cell can also save time and money.

Being able to better control the differentiation process may improve beta cell replacement therapy options for individuals with type 1 diabetes. Developing ways for the body to once again generate its own insulin and manage blood glucose levels could change the way the disease is managed. This study was a partnership between Helmholtz Zentrum München, the German Center for Diabetes Research (DZD), Technical University of Munich (TUM), and Miltenyi Biotec.

Though not involved with this study, the Diabetes Research Connection stays abreast of the latest advancements in the field and how emerging research may impact the diagnosis, treatment, and management of type 1 diabetes, as well as the search for a cure. As more about the disease is understood, researchers can build on this information. The DRC provides critical funding for early-career scientists whose research is focused on type 1 diabetes. To learn more and support these efforts, visit https://diabetesresearchconnection.org.

Learn More +

Could Vitamin D Help Protect Against Type 1 Diabetes?

One trend that researchers have noticed in type 1 diabetes (T1D) is that individuals with this disease tend to have some level of vitamin D deficiency. This impacts vitamin D receptor (VDR) expression, which may contribute to the development of diabetes.

A recent study found that higher levels of VDR may actually protect insulin-producing pancreatic beta cells and preserve some of their mass and function. They also found that as circulating glucose levels decreased, so did VDR levels. Maintaining a stable level of vitamin D may help counteract the disease.

Researchers are investigating the potential effectiveness of using vitamin D supplements as a prevention and treatment strategy for type 1 diabetes, and it may be beneficial for type 2 diabetes as well. They need to develop a clearer understanding of the negative regulation of VDR in individuals with the disease and how to improve VDR levels to a point where they would be more protective.

This study was conducted on mouse models, so it would need to be tested in humans as well to see if the same findings are true. However, this could be a step toward proactively reducing risk of T1D and protecting insulin-producing beta-cell function and mass. Researchers are continuing to learn more about VDR expression and its relationship to diabetes.

Diabetes Research Connection, though not involved with this study, is committed to supporting early-career scientists pursuing novel research on type 1 diabetes in order to expand the body of knowledge and help prevent or cure the disease in addition to reducing complications and improving quality of life for those living with the disease. Scientists are learning more every day. To support these efforts and find out more about current projects, visit https://diabetesresearchconnection.org.

Learn More +

Supporting Diabetes Management Via Drone

Type 1 diabetes (T1D) affects people from all walks of life around the world. A challenge in managing the disease is regular access to healthcare and necessary supplies. Healthcare providers in Ireland recognized the impact of this problem even more when natural disasters such as snowstorms, hurricanes, and flooding made it difficult for patients to reach clinics for their appointments or to get medications.

As a result, researchers turned to technology as a way to potentially help patients receive the care they need. They spent more than a year working out the logistics and regulatory compliance of using drones to deliver supplies to individuals in remote areas or those cut off from access following natural disasters or other incidents such as COVID-19. The researchers had to ensure that when using the drone, they were following all aviation and aerospace regulations, as well as medical and safety regulations.

The first flight traveled around 20 km each way going from Galway, Ireland, to the Aran Islands on September 13. The Wingcopter 178 drone delivered insulin from a pharmacy to a patient’s clinician and picked up a blood sample for remote testing of HbA1c levels. This test flight demonstrated that autonomous delivery of insulin is possible.

There was a significant amount of planning, research, and collaboration that went into making the drone delivery possible, but it is a starting point for making this technology available in healthcare. The researchers needed to have backup plans in place for each step of the process, and they worked closely with a multidisciplinary team including aviation and medication regulators.

However, this successful test flight is a stepping stone toward making drone delivery a reality for patients with diabetes. This could allow patients to continue receiving life-saving insulin and other supplies even when they are unable to make it out of their home. Diabetes does not take a break during pandemics or adverse events, and there are patients who live in rural communities where access to healthcare is a challenge.

Diabetes Research Connection (DRC) is excited to see how technology continues to improve and whether drone delivery becomes a feasible option as part of diabetes management and healthcare in general. The DRC provides funding for novel, peer-reviewed research studies focused on the prevention, cure, and improved management of type 1 diabetes. To learn more and support these efforts, visit https://diabetesresearchconnection.org.

Learn More +

Could There Be More than One Form of Type 1 Diabetes?

Researchers know that there are significant differences between type 1 diabetes (T1D) and type 2 diabetes (T2D), but now they are digging a little deeper. When it comes to T1D, the disease may not affect everyone in the same way. According to a recent study, there may be more than one endotype, and a major differentiator could be age of diagnosis.

The study looked at a small sample of 19 children diagnosed with T1D within the past two years and compared age of diagnosis against amount of beta cell destruction and levels of proinsulin and C-peptides. They also compared these ratios in a group of 171 adults with T1D based on their age of diagnosis. Their results showed that children who were diagnosed before the age of 7 had much higher levels of proinsulin-insulin co-localization than those diagnosed after age 13. Individuals between ages 7 and 13 were divided and fell into one group or the other.

The researchers also compared results against CD20Hi and CD20Lo immune profile designations for each participant. Children age 7 or younger tended to be CD20Hi, while those age 13 or older were CD20Lo, and the children in between were aligned with their respective groups based on whether they were CD20Hi or CD20Lo.

These differences in proinsulin and C-peptide concentrations demonstrate a distinction in how individuals are impacted by T1D, leading to at least two separate endotypes. Understanding whether an individual has T1D endotype 1 (T1DE1) or T1D endotype 2 (T1DE2) could enable more targeted and effective treatment of the disease based on how each group responds. Individuals with T1DE1 are identified as having higher levels of beta cell loss, therefore may have more difficulty regulating blood glucose. Those with T1DE2 may retain more beta cells, and determining ways to activate and protect these cells could support improved natural insulin production.

Recognizing that T1D affects people differently is a step in the right direction toward more personalized medicine and targeted therapies. Therapeutic trials could be aimed at groups depending on age of diagnosis and specific endotype in the future as larger studies are conducted to determine the significance of these findings.

Diabetes Research Connection (DRC) is committed to supporting advances in research around type 1 diabetes and provides early-career scientists with critical funding for their studies. Research is focused on preventing and curing type 1 diabetes, minimizing complications, and improving quality of life for those living with the disease. Learn more and support these efforts by visiting https://diabetesresearchconnection.org.

Learn More +

Artificial Pancreas App Supports Type 1 Diabetes Management

Maintaining good glycemic control is challenging when living with type 1 diabetes. Individuals must carefully monitor their blood glucose levels throughout the day, then administer the appropriate amount of insulin to try to stay within target range. This can be more difficult than it sounds. Furthermore, many people with type 1 diabetes struggle with their blood sugar dropping overnight while they are asleep.

Patients living in the UK may have access to a new artificial pancreas app that takes away some of the stress and burden of constant blood sugar management. The CamAPS FX app works in conjunction with the Dana RS insulin pump and the Dexcom G6 continuous glucose monitor. Using a complex algorithm, the app tracks blood glucose levels, then automatically adjusts insulin administration accordingly. This reduces the demand for regular finger sticks to check blood sugar, and patients do not need to calculate how much insulin they require on their own.

The app has been approved in the UK for individuals age one and older, including pregnant women, who have type 1 diabetes. It was developed based on 13 years of clinical research conducted by Professor Roman Hovorka from the University of Cambridge and Cambridge University Hospitals NHS Foundation Trust and his team at the Wellcome-MRC Institute of Metabolic Science. In addition, data from the app can be shared with patients’ healthcare teams allowing them to provide more personalized diabetes care.

Technology has made some significant advancements in type 1 diabetes care, and this is one more example of how it can impact management of the disease and improve health outcomes. Artificial pancreas technology is an area that researchers have been focused on improving over the years in order to give patients more options and reduce the burden of managing the disease.

Diabetes Research Connection (DRC) is excited to see more results from use of the app and what it could mean for future diabetes management, not just in the UK but around the world. Currently the app is only available to patients at select diabetes clinics in the UK. Though not involved with this project, the DRC is committed to advancing diabetes research to help prevent and cure type 1 diabetes, minimize complications, and improve quality of life for those living with the disease. Early-career scientists can receive up to $50K in funding to support novel, peer-reviewed research projects. To learn more about current studies and contribute to these efforts, visit https://diabetesresearchconnection.org.

Learn More +

Using Telehealth to Enhance Pediatric Type 1 Diabetes Management

Telehealth has come a long way in improving access to care. It has become even easier for patients to connect with healthcare providers without going to their office. Using available technology, a recent study out of the University of California, Davis (UC Davis) examined whether management of type 1 diabetes (T1D) in pediatric patients could be improved through telehealth.

Fifty-seven patients under the age of 18 participated in the study where they were connected with a member of the research team every four, six, or eight weeks via video conference for at least one year. This was in addition to quarterly clinic visits. All of the patients had suboptimal glycemic control before the study began, and most lived at least 30 miles away from the hospital.

The program was led by Stephanie Crossen, a pediatric endocrinologist at UC Davis Health. Prior to each video call, patients sent data from their diabetes devices for Crossen and her team to review. After one year, their findings showed that “83 percent of participants completed four or more diabetes visits within a year, compared to only 21 percent prior to the study,” and “mean HbA1c decreased from 10.8 to 9.6 among participants who completed the full year.”

In addition, 93 percent of participants were highly satisfied with the program, and more participants were using technology such as insulin pumps and continuous glucose monitors (CGMs). However, one area that did not change significantly was the number of diabetes-related emergency room or hospital visits.

Still, the study shows that telehealth could be a valuable intervention for children and youth with type 1 diabetes to help them better manage their disease and health outcomes. A reduction in HbA1c levels and an increase in frequency of care is encouraging. Telehealth may be one more tool for effectively supporting individuals with T1D.

Research continues to advance the understanding, treatment, and management of T1D. Though not involved with this study, the Diabetes Research Connection (DRC) supports these efforts as well by providing critical funding to early-career scientists studying the disease.  Researchers can receive up to $50K for novel, peer-reviewed projects aimed at preventing or curing type 1 diabetes, minimizing its complications, and improving quality of life for individuals living with the disease. To learn more, visit https://diabetesresearchconnection.org.

Learn More +

Connect For A Cure: June 2020 Newsletter

The importance of research has been highlighted during this pandemic and our early-career scientists continue their ground-breaking, peer-reviewed research. Since November, we’ve funded 8 new research projects. Thank you for your support and for being a part of the DRC community.

Click on the link below to read more about what we’ve been up to and the impact we are making together. It takes a community to connect for a cure!

June 2020 Newsletter

Learn More +

Recapping Current Research Regarding Type 1 Diabetes Development and Cardiovascular Risks

Our bodies are formed from an innumerable number of cells and molecules. Both DNA and RNA play a role in determining cells’ function and purpose. At a conference of the National Congress of the Spanish Diabetes Society, researchers revealed new studies regarding the potential role of long non-coding RNAs (lncRNAs) in the development of type 1 diabetes, as well as the risk of cardiovascular problems in individuals with the disease.

A recent study found that lncRNA, which are use in transcriptional and post-transcriptional regulation of cells and are not translated into proteins, may be involved in the destruction of insulin-producing beta cells. There may be some forms of lncRNAs that affect inflammation and cell death, which are factors in the development of type 1 diabetes.

Dr. Izortze Santín Gómez, a professor at the University of the Basque Country and a researcher at the Biocruces Bizkaia Research Institute is studying the fundamental characteristics of the lncRNAs and how they may affect pancreatic beta cells on a genetic-molecular level. Once this is better understood, researchers could begin modifying the lncRNAs to create a targeted therapy that increases survival rate and viability of the pancreatic beta cells.

Another study that was presented at the conference involved cardiovascular risk for individuals with type 1 diabetes. Joseph Ribalta, a professor at the Rovira i Vigili University of Reus, found that “more than 30% of heart attacks occur in people with apparently normal LDL cholesterol.” High cholesterol is a key risk factor for heart attacks. His findings have revealed that individuals with T1D may be at greater risk because “LDL particles are more numerous and smaller, that their HDLs work less effectively and/or that there are some lipoproteins (remnants) that the body has trouble eliminating.”

Identifying these potential risk factors and knowing how to test for or treat them could help reduce hidden cardiovascular risk in individuals with T1D. For instance, focusing on triglycerides rather than cholesterol may be beneficial for patients who meet certain criteria.

There is a lot of interesting work coming out of laboratories and universities around the world regarding type 1 diabetes. Researchers are constantly improving and refining their understanding of the disease and possible ways to prevent, treat, or cure it. Diabetes Research Connection (DRC) is committed to contributing to this wealth of knowledge by providing critical funding to early-career scientists pursuing novel research studies focused on type 1 diabetes. Learn more about current projects and how to help by visiting https://diabetesresearchconnection.org.

Learn More +

Increasing Cell Protection Against Immune System Attacks

One of the challenges researchers have faced with using cell therapy to treat type 1 diabetes is that the body’s immune system may still attack and destroy transplanted cells. This process may be slightly delayed depending on the approach used, but it often still occurs. That means that patients may still need to rely on immune suppression medications in conjunction with cell therapy. However, immunosuppression can increase risk of infection or other complications.

A recent study found that targeting highly durable cells that have the ability to escape immune attacks and survive may be key in developing a more effective treatment for type 1 diabetes. Dr. Judith Agudo has identified stem cells with this “immune privilege” and is working to determine exactly what contributes to this level of protection and how to replicate it with beta cells. Dr. Agudo is an assistant professor in the department of immunology at Harvard Medical School and in the department of cancer immunology and virology at the Dana-Farber Cancer Institute.

If scientists can engineer insulin-producing beta cells that have the ability to avoid attacks from the immune system while still performing their intended functions, this could be a huge step forward in potentially treating type 1 diabetes. The beta cells would be able to stimulate insulin production without requiring the patient to take immune suppression medications, meaning their immune system could continue to function as normal and fend off infection.

Once Dr. Agudo is able to develop these durable beta cells, they will be tested in animal models, followed by humans a few years later. It is important to conduct thorough testing to ensure this method is both safe and effective. If it is, the goal would be to eventually make it available to anyone who requires the use of insulin.

Diabetes Research Connection (DRC) is excited to see how this study evolves and what it could mean for the future of diabetes treatment. While not involved in this study, the DRC plays an integral role in providing critical funding for early career scientists focused on research for type 1 diabetes. Scientists continue to advance understanding of the disease and potential approaches to improve diagnosis, treatment, management, and quality of life for individuals living with type 1 diabetes. Learn more about current DRC projects and how to support these efforts by visiting https://diabetesresearchconnection.org.

Learn More +

Generating Pancreatic Islet Organoids to Treat Type 1 Diabetes

In individuals with type 1 diabetes, the immune system mistakenly attacks and destroys insulin-producing beta cells. Without a naturally occurring supply of insulin to manage glucose, blood-glucose levels can quickly spiral out of control leading to hypo- or hyperglycemia. If left untreated, this can become potentially fatal.

A recent study found a way to generate an abundance of pancreatic islet organoids that are glucose-responsive and insulin-secreting. As such, they can help with management and potential reversal of type 1 diabetes. Researchers identified a cluster of protein C receptor positive (Procr+) cells in the pancreas of adult mice. These cells have the ability to differentiate into alpha, beta, omega, and pancreatic polypeptide (PP) cells, with beta cells being the most abundant.

The Procr+ islet cells can then be cultured to generate a multitude of islet-like organoids. When the organoids were then be transplanted into adult diabetic mice, they were found to reverse type 1 diabetes. More research is necessary to determine if human pancreatic islets contain these same Procr+ endocrine progenitors and a similar process could be used to treat type 1 diabetes in humans.

As scientists delve deeper into the cellular impact of the disease and how different cells respond and can be manipulated, it opens new doors to potential treatments or cures for type 1 diabetes. Though not involved in this study, this is the type of cutting-edge research that the Diabetes Research Connection (DRC) is committed to supporting. Early-career scientists can receive up to $50,000 in funding through DRC for novel, peer-reviewed research aimed at preventing and curing type 1 diabetes, minimizing complications, and improving the quality of life for individuals living with the disease. To learn more and support these efforts, visit https://diabetesresearchconnection.org.

Learn More +

Could Insulin-Producing Beta Cells Play a Role in Triggering Onset of Type 1 Diabetes?

Researchers know that type 1 diabetes (T1D) occurs when the immune system mistakenly attacks and destroys insulin-producing beta cells. This leaves the body unable to self-regulate blood glucose levels because it produces little or no insulin on its own. What scientists have been striving to understand is what causes the body to destroy these cells in the first place.

A recent study found that the beta cells themselves may play a role in signaling the attack. The insulin-producing cells may be sending out signals that increase M1 macrophages that cause inflammation and the resulting cell destruction. The M2 macrophages that reduce inflammation and help repair tissue are not as heavily expressed.

The researchers looked specifically at Ca2+-independent phospholipase A2beta (iPLA2beta) enzymes and the resulting iPLA2beta-derived lipids (idles) and how they are activated by beta cells.  The idols either stimulate M1 macrophages or M2 macrophages depending on the active signaling pathways.

The study involved two sets of mice – one group that had no iPLA2beta expression (knockout mice), and one group with overexpression of iPLA2beta.  Researchers found that even when M1 macrophage activation was induced, the knockout mice experienced an increase in M2 macrophages and a reduced inflammatory state. The mice that had overexpression of iPLA2beta, on the other hand, experience an increase in M1 macrophages and inflammatory eicosanoids.

According to Sasanka Ramanadham, Ph.D., research co-lead, “To our knowledge, this is the first demonstration of lipid signaling generated by beta cells having an impact on an immune cell that elicits inflammatory consequences. We think lipids generated by beta cells can cause the cells’ own death.”

As scientists continue to learn more about lipid signaling and the potential role it plays in the development of type 1 diabetes, this could lead to improved methods of delaying or preventing onset or progression of the disease. This is yet another approach that researchers are taking to understand as much as they can about how and why T1D develops and how to better manage the disease.

It is this type of research that opens doors to advancements toward preventing or curing type 1 diabetes. Diabetes Research Connection (DRC) supports early-career scientists pursuing novel, peer-reviewed research studies focused on improving diagnosis, treatment, and prevention of T1D as well as improving quality of life for individuals living with the disease and one day finding a cure. Ensuring researchers receive necessary funding for their projects is critical. To learn more about current projects and support these efforts, visit https://diabetesresearchconnection.org.

Learn More +

Redifferentiating Beta Cells to Treat Type 1 Diabetes

All cells serve a specific purpose, and each one plays an integral role in the function and survival of the human body. However, in individuals with type 1 diabetes, insulin-producing beta cells are destroyed leaving the body unable to self-manage glucose levels. Scientists have been trying to determine exactly why this occurs, and how to stop, prevent, or reverse it for years. Each day they learn a little more.

A recent study out of Germany examines dedifferentiation of beta cells as a potential cause for type 1 diabetes.  Researchers believe that insulin-producing beta cells may lose their identity, which in turns causes a regression in function.  They sought to target the affected cells using diabetic mouse models to see if they could redifferentiate the beta cells back to normal function, or at least preserve existing function if regression is caught early.

To do this, they invoked diabetes in mice using streptozotocin but left some functional beta cells. Then, they administered a combination of Glucagon-like peptide-1 (GLP-1) and estrogen in conjunction with long-acting insulin.  The drug was directed to the dedifferentiated beta cells, and results showed that this combination treatment helped to “normalize glycemia, glucose tolerance, to increase pancreatic insulin content and to increase the number of beta cells.”  They also found that when GLP-1/estrogen was used together, rather than each substance on its own, human beta cells also showed improved function.

The mice in the study showed no signs of systemic toxicity even when high doses of the drug were administered.  This could help to ease the way when the treatment is ready to be used in human trials. Researchers want to further explore whether this treatment could be used as a form of regenerative therapy to redifferentiate dedifferentiated beta cells and stimulate insulin production. If type 1 diabetes was detected early on, the therapy could potentially be used to slow or stop cell regression.

This study could change the way that some researchers approach their work and inspire new studies aimed at treating or curing type 1 diabetes. Diabetes Research Connection (DRC) supports early-career scientists in pursuing this type of work by providing necessary financial resources. With proper funding, scientists can move forward with their projects and improve not only understanding of the disease, but also treatment options.  The goal is to one day discover a cure. To learn more about current projects and how to help, visit https://diabetesresearchconnection.org.

Learn More +

New Oral Treatment May Help with Managing HbA1c for Type 1 Diabetes

Keeping HbA1c levels within a healthy range can be challenging for those living with type 1 diabetes. It requires constant vigilance when it comes to monitoring blood sugar levels and administering the appropriate amount of insulin. Even with careful management, there can be complications.

A recent study found that a once-daily pill used in conjunction with insulin may help reduce HbA1c levels by as much as 0.32% after 12 weeks.  The pill, known as TTP399, activates glucokinase in the liver.  This, in turn, stimulates the body to improve glucose utilization which can lead to lower blood glucose levels. Overall, this could help improve HbA1c levels as well as time spent within a healthy glucose range.

A randomized, double-blind, adaptive study compared participants taking the TTP399 pill versus those on a placebo.  Those who received the pill showed improved glucose response and fewer symptomatic hypoglycemic episodes.  The average improvement in HbA1c was 0.21%, and there was also an average of an 11% reduction in the dosage amount of total daily mealtime bolus insulin needed.

On the other hand, the placebo group showed a 0.11% increase in HbA1c after the 12-week trial period.  Neither group reported any incidences of diabetic ketoacidosis, and there was only one incident of severe hypoglycemia, which occurred in the placebo group.

This phase 2 study involved 85 participants. They were all currently either administering daily injections or using an insulin pump.  If they were using a continuous glucose monitor (CGM), they had to be on it for at least three months prior to the start of the study to be included.

According to Steve Holcomb, president and CEO of vTv Therapeutics, “Consistent with FDA guidance, a 0.3% improvement in HbA1c is considered clinically meaningful and coupled with the well-controlled population of patients and favorable safety data from our clinical trials to date, this provides a strong basis for moving this potential first-in-class program forward.”

The pill could be used in conjunction with insulin therapy as a way of further managing and reducing HbA1c levels. This an exciting step forward in terms of type 1 diabetes management and supporting individuals in staying within healthy ranges for HbA1c and daily blood sugar levels.

Diabetes Research Connection (DRC), though not involved with this study, is interested to see how it evolves moving forward, and what it could mean for the future of oral treatment involving noninsulin products.

Research for type 1 diabetes continues to improve and advance every single day, and DRC helps makes this possible by providing critical funding to early-career scientists pursuing novel research studies on type 1 diabetes.  Through generous donations from individuals, corporations, and foundations, they are able to provide researchers with up to $50K in funding to support studies aimed at improving prevention measures, enhancing quality of life, reducing complications, and finding a cure. Learn more by visiting https://diabetesresearchconnection.org.

Learn More +

Type 1 Diabetes Cases Continue to Rise

Type 1 diabetes (T1D) is a well-known disease, but it is one that scientists have yet to find a way to prevent or cure. The exact cause is unknown because it is believed that both genetics and environment play a role. While significant advances have been made in understanding and managing T1D over the years, it is still a disease that affects nearly 1.6 million Americans.

A recent study from the Centers for Disease Control and Prevention (CDC) reveals that the number of people diagnosed with T1D has increased by 30 percent since 2017. That is an alarming change. Breaking things down even further, it appears that the greatest increases have occurred among African American, Hispanic, and Asian/Pacific Islander children, with each group seeing an approximate 20 percent rise in cases between 2002 and 2015. When it comes to age, new diagnoses of T1D occurred most frequently in children between the ages of 5 and 14.

Overall, the CDC reports that approximately 1.4 million adults and 187,000 children in the United States are currently living with T1D. Unlike type 2 diabetes, T1D is not related to diet or lifestyle. For reasons that are not yet entirely understood, the immune system attacks and destroys insulin-producing beta cells leaving the body unable to effectively regulate blood sugar levels. Researchers have found many ways to support individuals in better monitoring and managing the disease, but they have not found a way to stop it from occurring or to cure it once it does.

That is why ongoing research and clinical trials are so important. They are vital to improving how the disease is managed and reducing complications, as well as one day finding a cure. Diabetes Research Connection provides early-career scientists with up to $75,000 in funding so that they can move forward with novel, peer-reviewed research studies focused on type 1 diabetes. This funding makes it possible for them to continue building the body of knowledge around the disease and exploring new treatment options. To learn more about how to support these efforts, visit https://diabetesresearchconnection.org.

Learn More +

Exploring the Impact of Type 1 Diabetes on Bone Health

The body continually goes through a cycle of bone formation and bone resorption. As bone tissue is broken down and calcium is released, new microstructures are formed to support bone growth. Issues with bone metabolism, such as low bone mineral density (BMD), can lead to osteoporosis and other conditions. Studies have shown that adults with type 1 diabetes often have lower BMD.

A recent study found that individuals with type 1 diabetes may be at risk for decreased BMD compared to individuals without the disease. In a study of 173 children and adolescents with T1D compared to 1,410 non-diabetic peers, there was a significant difference in bone turnover markers in participants with T1D. Researchers looked at three different markers based on BMD measurements and blood samples and found that individuals with T1D had fewer of all three types of markers. However, there was no significant difference between bone turnover markers and diabetes duration, or in BMD levels between the two groups.

According to Dr. Jens Otto Broby Madsen, a physician in the department of pediatrics and adolescent medicine at Herlev Hospital in Denmark, “Decreased bone turnover markers might be the first warning of a negative effect of type 1 diabetes on bone health. Bone turnover markers might be a way of screening for early changes, long before changes can be seen by DXA scans.”

This may help improve health, quality of life, and disease management in the future to decrease risk of other conditions in conjunction with T1D, or at least improve early detection. Diabetes Research Connection (DRC) strives to support novel research studies by providing critical funding to early career scientists to help them move forward with their work. It is these types of efforts that increase understanding about the disease and can improve diagnosis, prevention, treatment, and management of T1D. To learn more about current projects and how to help, visit https://diabetesresearchconnection.org.

Learn More +

Advancements in Type 1 Diabetes Management Technology

One of the challenges – and frustrations – of living with type 1 diabetes (T1D) is multiple finger sticks each day to test blood sugar levels. Individuals want to ensure that they are staying on top of blood sugar in order to administer insulin or glucose as needed. Even continuous glucose monitors require a tiny needle stick in order to monitor blood sugar levels.

In a recent study, researchers share advancements using laser technology, rather than blood samples, in order to measure glucose concentration. The device they developed uses Raman spectroscopy, which shines near-infrared light on the skin to determine its chemical composition. This includes reading the signal given off by glucose located in the interstitial fluid that surrounds skin cells.

The near-infrared light only has the ability to penetrate a few millimeters into the skin, so researchers needed to find a reliable way to measure glucose from this reading. Initially, they were comparing the chemical composition of the tissue with blood samples taken simultaneously to determine glucose levels. However, there was too much unpredictability since movement of the patient or changes in the environment could alter results. In addition, it required a great deal of calibration.

The Laser Biomedical Research Center at MIT has spent more than 20 years working on developing a glucose sensor using Raman spectroscopy, and they have made a lot of advancements over the years. The latest device has evolved from indirect measurement of glucose concentrations, like those mentioned above, to direct measurement. Researchers found that by using a small fiber to collect the Raman signal after shining the near-infrared light at a 60-degree angle, they could filter out unwanted signals from other solid components in the skin. Testing the device on pigs, they were able to get an accurate glucose reading for up to an hour, and it only required about 15 minutes of calibration.

One drawback to the current technology is that the device is approximately the size of a desktop printer, meaning it is not easily portable. With a slightly smaller system, individuals could have a testing device at home or at work where they could place their finger on a sensor and Raman spectroscopy would be used to check blood sugar. Eventually, researchers would like to create a wearable monitor that would act as a continuous glucose monitor but without any needles.

After more than two decades, researchers are finally getting closer to their goal of creating a laser-based glucose sensor that can be used for everyday monitoring. It is encouraging to see advancements that seek to take some of the pain and inconvenience out of blood sugar monitoring by eliminating the need for so many needles.

Diabetes Research Connection (DRC) is excited to see how this technology continues to advance and what it may mean for the future of continuous glucose monitoring and diabetes management. Researchers around the world are focused on improving the prevention, treatment, and management of type 1 diabetes. The DRC supports these efforts by providing up to $75K in funding to early-career scientists pursuing novel research for T1D. Learn more by visiting https://diabetesresearchconnection.org.

Learn More +

Three Words that Changed My Life Forever…Type 1 Diabetes

National Tell a Story Day

I will never forget April 30, 2003, the day my life changed forever. My mom picked me up from school and asked, “How many times did you pee today, Hannah?” It’s a question she’s been asking frequently. I thought I might get in trouble if I told her the truth, so I said only twice.

We drove away and suddenly I could tell we were driving in the direction of my pediatrician’s office, not home. When I noticed my dad’s car in the parking lot, I knew it was not a routine visit, something was off. I was rushed inside, weight taken, vitals checked and then the dreaded blood test.

After some time passed, the doctor came in and told us to sit down. He started speaking to my parents about how all the signs; my drastic weight loss, the number of times I went to the bathroom and the amount of liquids I consumed daily confirmed what my parents already thought, I have type 1 diabetes (T1D).

I was diagnosed with T1D 17 years ago at the age of 7. My childhood was spent counting carbs, making sure I had all my supplies every time I left the house, worrying about ketoacidosis, low blood sugar and having to go to the hospital.

After my diagnosis, life was hard. I was not allowed to go on field trips, kids teased me and said I had “cooties” (the simple term for contagious) and I could not enjoy food or life the same way I did before. It was not until that summer that things started getting better.

My dad found a camp for kids with T1D and booked a weekend family trip. The first thing I did when I got there was learn how to give myself insulin shots. I wasn’t scared; I was excited to gain some control back. My parents found other parents who were worried about this new predicament as well and talked about tips for management and how to cope.

I never really had hope growing up that there would be a cure during my lifetime…until now!

As the Development Assistant at the Diabetes Research Connection (DRC), I see first-hand the innovative research being funded and it gives me hope.

Now, I have hope that this disease WILL be eliminated, and I WILL be alive when the cure is discovered.

~ Written by Hannah Gebauer

Learn More +

Exploring the Impact of Environment on Type 1 Diabetes Risk

While researchers know that type 1 diabetes is caused by the destruction of insulin-producing beta cells, what they are still uncertain about are the exact causes of this process. They know that genetics play a role, yet there is not a single gene responsible for the disease; there are several genes that are believed to contribute. Furthermore, they are not convinced that the disease is entirely genetic, and have reason to believe that environmental factors are to blame as well. But once again, there is not a single environmental risk that has a significantly greater impact than others.

A recent study examined several environmental risk factors such as “air pollution, diet, childhood obesity, the duration of breastfeeding, the introduction of cow’s milk, infections, and many others” and yet researchers still do not have any definitive answers. What they do know is that the incidence of type 1 diabetes has increased over the past 30 years by 3 percent year over year, and this change is too significant to be caused by genetics alone.

Using a variety of modeling, they evaluated the impact of specific environmental factors over time. But the simulated data did not pinpoint one factor that stood out above the others and had a stronger impact on diabetes risk. It is likely that a combination of environmental factors is at play in conjunction with genetic risk. More research is needed to further investigate potential risks and protective factors when it comes to type 1 diabetes.

These findings may inspire other researchers to dig more deeply into environmental factors and their impact on disease development and progression. Diabetes Research Connection (DRC), though not involved with this study, provides critical funding for early-career scientists to pursue novel research studies related to type 1 diabetes to enhance understanding as well as prevention, treatment, and management of the disease. The goal is ultimately to find a cure. Learn more about current projects and how to help by visiting https://diabetesresearchconnection.org.

Learn More +

Making Insulin More Affordable During Coronavirus Pandemic

The coronavirus crisis has turned life upside down for people around the world. As tighter restrictions are put in place and more businesses are forced to close or cut hours, it is taking a serious toll on the economy and individuals’ finances. Millions of people have filed for unemployment and lost employer-provided health insurance.

This can be an especially scary time for people with chronic diseases such as type 1 diabetes who require continued medical care, supplies, and medications to manage their condition. Lack of income or insurance means that some people can no longer afford insulin. They may begin rationing what they have left, which can be incredibly dangerous and lead to diabetic ketoacidosis, which can be fatal.

The cost of insulin in the United States has skyrocketed in recent years, but in an effort to support those with diabetes during this difficult time, pharmaceutical company Eli Lilly recently announced a $35 monthly cap on out-of-pocket insulin costs. Almost all of Lilly’s insulins are included, and the cap applies to individuals both with and without insurance. However, according to Lilly, “patients with government insurance such as Medicaid, Medicare, Medicare Part D, or any State Patient or Pharmaceutical Assistance Program are not eligible for the scheme.”

With so many Americans facing financial hardships right now, this is a step toward reducing some of the stress for those with diabetes regarding how to pay for insulin in order to keep themselves healthy. Insulin is not optional when it comes to type 1 diabetes – it is a life-sustaining medicine. Other drug makers such as Sanofi and Novo Nordisk have also lowered the cost of insulin during this time.

Diabetes Research Connection (DRC) is glad to see that individuals with type 1 diabetes are getting some support during these challenging times so that they can continue to afford the insulin they need. Until a cure for diabetes can be found, affordable insulin is a necessity. The DRC continues to work toward finding a cure as well as improving treatment options. Learn more at https://diabetesresearchconnection.org.

Learn More +

Investigating a New Form of Diabetes Management – a Smart Patch

The traditional method of managing type 1 diabetes is testing blood sugar levels, then dosing and administering the correct amount of insulin to keep blood sugar within the target range. This is done over and over again throughout the day, each and every day. Researchers are constantly seeking improved methods of managing the disease that are less patient intensive.

Over the years, scientists have created continuous glucose monitors, insulin pumps, artificial pancreases, and other systems to assist with managing type 1 diabetes (T1D). Each device has its pros and cons depending on the patient and their situation. Patients must find what works best for their needs.

A recent study is investigating yet another treatment option: a smart insulin patch. This small patch contains tiny microneedles with glucose-sensing polymer. When blood sugar begins to rise, the polymer is activated and releases doses of insulin. As blood-glucose levels return to normal, it stops administering insulin.

This technology removes the burden of constantly testing blood by patients and handles the testing and administration on its own. The needles penetrate the skin just far enough to be effective without causing much more than a pinprick of pain. The current model is designed to manage blood sugar levels for up to 24 hours and has been tested on mice and pigs. After 24 hours, the patch would need to be replaced with a fresh one.

Researchers are in the process of obtaining approval to begin human trials for the smart insulin patch. Although it may be several years before this technology could potentially be brought to market, it is a step in the right direction toward creating a more effective, efficient way of managing T1D. Researchers also believe that it may help reduce risk of insulin overdoses which can lead to hypoglycemia.

Though not involved with this study, Diabetes Research Connection (DRC) is excited to see what happens in the future if the patch is approved for human trials. It has the potential to become one more tool for individuals with T1D to use to manage the disease and enhance their quality of life. The DRC is committed to supporting research regarding T1D and providing funding to early career scientists for novel, peer-reviewed studies. Learn more about current projects and how to support these efforts by visiting https://diabetesresearchconnection.org.

Learn More +

Improving Vascularization in Pancreatic Islet Transplants

One of the approaches scientists have been exploring for the treatment of type 1 diabetes is pancreatic islet cell transplants. By introducing these cells into the body, they are often able to maintain better glycemic control and support insulin production. However, there are many challenges that come with this type of treatment. It is essential to protect transplanted islet cells from immune system attack while also promoting sustainability. Cells tend to lose function over time and poor vascularization is often a contributing factor.

In a recent study, scientists have found a way to improve vascularization and therefore function of transplanted human pancreatic islets in diabetic mice. In addition to encapsulating islet cells, they also included human umbilical cord perivascular mesenchymal stromal cells or HUCPVCs. The HUCPVCs had a positive effect on graft function and suppressed T cell responses. In both immunocompetent and immunodeficient diabetic mice, glycemic control was maintained for up to 16 weeks when cells were transplanted via a kidney capsule, and for up to six weeks or seven weeks respectively when administered via a hepatic portal route. Furthermore, with the addition of HUCPVCs to the transplanted islet mass, rejection was delayed and the graft showed some proregenerative properties.

These findings may improve the future of human islet allotransplantation as a viable option for long-term treatment of type 1 diabetes. Scientists are constantly exploring ways to reduce rejection and the need for prolonged immunosuppression while maintaining better glycemic control. This study opens doors for more advanced research on the use of HUCPVCs in islet transplantation as well as related therapies.

Diabetes Research Connection is committed to supporting research for type 1 diabetes by providing early-career scientists with essential funding to keep projects moving forward. Learn more about current studies and how to donate to these efforts by visiting https://diabetesresearchconnection.org.

Learn More +

Advances in Therapeutic Treatment for Type 1 Diabetes without Immune Suppression

One approach that researchers have been exploring to treat type 1 diabetes is cell therapy. By introducing new insulin-producing beta cells or other types of cells, scientists strive to support the body in once again producing its own insulin. A common challenge with this technique is that it often has limited results as the body once again attacks the cells, or they slowly lose function on their own. In addition, cell therapy typically requires immune suppression which can put individuals at risk for other complications.

However, in a recent study, researchers tested a new method of transplanting therapeutic cells by using a retrievable device with a silicone reservoir. The cells are further protected by a porous polymeric membrane that allows macrophages to enter the device without destroying the transplanted cells, or that prevents them from entering at all.

When tested in immunocompetent mice, the device supported normoglycemia for more than 75 days without the need for immunosuppression. The transplanted cells were able to effectively produce erythropoietin, which in turn improves oxygen supply to the body, and also generates insulin to manage blood sugar levels.

This is a notable step forward in improving cell therapy for the treatment of type 1 diabetes. More research and testing are required to determine how this process translates into human models. Researchers have been trying to limit or eliminate the need for immune suppression while transplanting healthy pancreatic, islet, and stem cells into the body to control blood glucose levels.

Dan Anderson, Ph.D., a member of the Diabetes Research Connection (DRC) Scientific Review Committee, is the senior author of the article published regarding these findings. DRC is excited to see where these advances may lead and what it could mean for the future of cell transplantation techniques and cell therapy for type 1 diabetes. The organization provides critical funding for a wide range of projects related to improving diagnosis, treatment, and prevention of the disease. Learn more about current studies and how to support these efforts by visiting https://diabetesresearchconnection.org.

Learn More +

Differentiating Between Childhood-Onset and Adult-Onset Type 1 Diabetes

Although many cases of type 1 diabetes (T1D) emerge in childhood because it is an autoimmune disorder unrelated to diet or exercise, there are some individuals who develop T1D in adulthood. This condition is referred to as latent autoimmune diabetes in adults, or LADA. LADA shares characteristics with both type 1 and type 2 diabetes, but it is more closely related to type 1.

Researchers estimate that around 10 percent of individuals diagnosed with T2D actually have LADA. This is discovered when patients do not respond as expected to common T2D treatment. Just like with T1D, their body’s immune system mistakenly attacks and destroys insulin-producing beta cells that are essential for blood sugar regulation.

Up to this point, autoantibody screening was the primary way of differentiating between LADA, T1D, and T2D, but this can be an expensive process. However, a recent study found that there may be genetic differences between these conditions that are significant enough to serve as a more affordable yet still reliable way of diagnosing diabetes type.

With T1D, when researchers examined the major histocompatibility complex (MHC) and “control for T1D genetic variants in one part of the MHC, other variants associated with T1D appear in another part of the MHC.” When they conducted the same test on LADA patients, the results were not the same. In controlling for T1D genetic variants, there was no association in another part of the MHC. Furthermore, they saw the same differences in outcomes when a sensitivity test was conducted.

These genetic differences may help medical professionals more accurately diagnose individuals with LADA and provide more effective treatment sooner. Additional research is necessary to determine whether these findings hold true across multiple ethnicities.

It is these types of studies that help other scientists advance their own research regarding type 1 diabetes in order to improve diagnosis, treatment, and management of the disease. Diabetes Research Connection (DRC) provides critical funding for early-career scientists pursuing novel research studies on T1D. To learn more or support current projects, visit https://diabetesresearchconnection.org.

Learn More +

Exploring Challenges with Hybrid Closed-Loop Insulin Delivery Systems

There are many different options for managing diabetes from manually checking blood sugar and administering insulin to using a hybrid-closed loop insulin delivery system that does the work automatically with some human input. This type of insulin delivery system, also referred to as an artificial pancreas, was designed to improve diabetes management and blood sugar control without as much demand on patients.

However, a recent study found that nearly one-third of children and young adults stopped using the hybrid closed-loop system within six months. Some of them even discontinued use of a continuous glucose monitoring (CGM) system. The study involved 92 participants with type 1 diabetes who had an average age of 16. Each participant began using the Medtronic 670G system in manual mode for two weeks before switching to auto mode. They received follow-up training via phone within one month after starting auto mode, then were seen in a clinic every three months during the next six months.

The Medtronic 670G system uses CGM data to automatically control basal insulin delivery. This can help manage changes in blood sugar more quickly and administer the correct amount of insulin without patient input. If boluses are needed, however, the individual must enter their carb count and blood glucose number manually.

Researchers found that use of auto mode continued to decrease over the 6-month trial period, dropping from 65.5% during the first month to 51.2% by the sixth month. In total, 28 youth stopped using the hybrid closed-loop system within the first six months, and 21 of those 28 stopped using CGM as well. This raises the question as to whether CGM use posed some barriers to success and continued use of the hybrid closed-loop system.

The study did show that while participants used the artificial pancreas, their time spent within range for blood glucose improved from 50.7% to 56.9%, and their HbA1c levels decreased from 8.7% to 8.4%.

Understanding the strengths and challenges of artificial pancreas use in children and young adults can help researchers to make improvements and adjust systems for better results and continued use. Hybrid closed-loop therapy is just one option for managing type 1 diabetes, and it is important for individuals to find what works best for their situation.

Diabetes Research Connection is committed to providing early-career scientists with the funding necessary to support research designed to prevent, cure, and better manage type 1 diabetes. Funding is critical to continue advancing understanding and therapies for the disease. To learn more about current projects and donate, visit https://diabetesresearchconnection.org.

Learn More +

Increasing Protective Factors to Reduce Risk of Type 1 Diabetes

Despite decades of research, scientists have yet to develop a cure for type 1 diabetes since it is a complex disease that is impacted by and interacts with many processes within the body. However, they have made significant advancements in understanding and managing the disease. Now, more focus is being put on preventing the development of type 1 diabetes.

In a recent study, researchers at the Pacific Northwest National Laboratory found that by increasing levels of growth differentiation factor 15 (GDF15) in non-obese diabetic mice, they were able to reduce the risk of developing type 1 diabetes by more than 50 percent. Although there are more than 387 pancreatic proteins in the body associated with T1D, the researchers discovered that GDF15 was significantly depleted in pancreatic beta cells of individuals with T1D.

By increasing GDF15 levels in the non-obese diabetic mice, it helped to protect islet cells from immune system attack. Researchers are seeking to determine whether this may be used to create more effective therapies for the treatment and prevention of the disease in humans. While more research is needed, it is a step in the right direction.

Diabetes Research Connection (DRC) is following these findings to see how they impact future diabetes research and treatment options. It is these types of studies that open doors for advancements in the field and an increased understanding of the disease. The DRC supports early-career scientists in pursuing novel, peer-reviewed research studies focused on the prevention, treatment, and management of T1D and eventually finding a cure. To learn more about current projects and support these efforts, visit https://diabetesresearchconnection.org.

Learn More +

Genetic Testing May Improve Prediction of Type 1 Diabetes Risk

The cause of type 1 diabetes is complex. There is not a single gene responsible for the disease, and both genetics and environment play a role. Plus, there is currently no way of preventing the disease from occurring. However, scientists believe that they can better predict which children and teenagers are at higher risk so their health can be monitored more closely and treatment started before they develop potentially life-threatening diabetic ketoacidosis.

A recent study found that a simple genetic test that compares an individual’s gene profile to 82 genetic sites that are known to be associated with type 1 diabetes can identify those who are most at risk. The test only costs $7 and uses a saliva sample, so no blood draws or painful testing are required. If an individual is flagged as high risk, they can then have autoantibody screening conducted to look for the presence of four islet autoantibody biomarkers of the disease. The presence of two or more autoantibodies further identifies an individual at increased risk. Autoantibody tests are slightly more expensive at $75 each.

While family history does increase risk of type 1 diabetes, it is not a guaranteed indicator, and more than 90% of people who develop the disease do not have a family history. This genetic test could help to differentiate between those at high risk and those at low risk so there are fewer unnecessary tests that occur, and individuals who could benefit from closer monitoring can be more accurately identified.

According to the study, “The general population risk of type 1 diabetes is about 4 out of 1000, and those with a positive genetic test now have a risk of about 4 out of 100.” Testing may allow doctors to provide more targeted care and treatment for the disease and support individuals in better managing their health. As research continues to advance, scientists learn more about the risk factors, biomarkers, genetic sites, and environmental factors that all contribute to the development of type 1 diabetes. In turn, this can enhance prediction, prevention, and treatment of the disease.

Diabetes Research Connection (DRC) supports early-career scientists in growing the body of knowledge that exists regarding type 1 diabetes by providing critical funding for research projects. Studies are focused on preventing and curing the disease as well as minimizing complications and improving quality of life. Learn more about current projects and how to support these efforts by visiting https://diabetesresearchconnection.org.

Learn More +

Type 1 Diabetes Poses Significant Financial Burden

Managing type 1 diabetes (T1D) is not only time consuming, it is also expensive. Costs include not only the basics to manage the disease such as testing supplies, insulin, continuous glucose monitors, and insulin pumps, but also those related to hospital care for complications or outpatient care. In addition, there are lost wages due to disease-related situations, as well as indirect costs. These expenses can quickly add up.

A recent study looked at the estimated lifetime economic burden for individuals with T1D versus those without. The results showed that the difference between the two groups over the course of 100 years (a lifetime), was $813 billion. The model projected costs for 1,630,317 individuals with T1D and the same number without. It followed simulated patients year by year from the time they were diagnosed until they passed away.

According to the study, “Diabetes contributes $237 billion in direct medical costs per year or 7% of the nation’s $3.3 trillion spent on health care, which is higher than the annual health care expenditures for other chronic diseases, such as cancer (5%) and heart disease/stroke (4%).”

Not only did individuals without T1D experience lower costs, they also had higher life expectancy rates. Patients with T1D are at increased risk for disease-related complications which can further impact life expectancy and financial burden. Currently, T1D is a progressive disease, and it is something that affects individuals for the rest of their lives because there is no known cure. It must be managed 24 hours a day, 7 days a week, 365 days a year.

The extreme difference in lifetime societal burden and economic burden between these two groups demonstrates the need for continued research related to T1D. The ability to prevent or delay disease development or progression, or to cure the disease, could have major financial cost savings. The results of this study were estimated given available data and modeling capabilities, so they may underestimate the true impact.

There were also certain limitations to the study, including data that was only recent up to 2016 and did not include costs associated with CGMs, insulin pumps, or hybrid artificial pancreas systems. Complication-related costs were derived from data on patients with type 2 diabetes because it was not available for patients with type 1 diabetes. However, the general message does not change: finding a way to delay, prevent, or eliminate disease progression is essential, in addition to minimizing complications.

Diabetes Research Connection (DRC) is committed to advancing research around type 1 diabetes by providing critical funding to early-career scientists. Through their novel, peer-reviewed studies, they can improve understanding of the disease as well as treatment options. To learn more about current projects and support these efforts, visit https://diabetesresearchconnection.org.

Learn More +

Studying Environmental Factors Related to Type 1 Diabetes

While genetics do play a role in the development of type 1 diabetes (T1D), researchers also believe that environment contributes as well. There is no singular cause of T1D, and all of its risk and protective factors are yet unknown. However, one study is striving to build a comprehensive understanding of diverse environmental factors and the role they may play in children developing T1D.

Researchers launched The Environmental Determinants of Islet Autoimmunity (ENDIA) several years ago and recently received an additional $8.25M in funding to keep it going for another three years. Over the past seven years, they have enrolled 1,500 participants, which includes babies ranging from pregnancy up to six months in age who have at least one immediate relative with T1D. The babies are seen every three to six months until they reach at least age three.

The study looks at a wide range of environmental factors in an effort to gain a better understanding of what increases or decreases risk of developing type 1 diabetes. Factors include “growth during pregnancy and early life, the method of delivery (natural birth versus caesarean section), the mother’s nutrition during pregnancy, infant feeding (breastfeeding and/or formula), the duration of breastfeeding and the child’s nutrition, the child’s immune system and when the child received vaccines and exposure to viruses during pregnancy and early life.”

Not only did it take a long time to recruit participants, it will take several years to gather and analyze the long-term data in order to identify potential risk or protective factors and how each child was affected. With millions of people living with T1D, this study may help to improve treatment and prevention in the future, possibly leading to a vaccine one day.

Diabetes Research Connection (DRC) will continue to follow this study and see how results progress and what discoveries are made. In the meantime, the organization provides critical funding for early career scientists pursuing research on various facets of T1D. Studies are focused on preventing or curing diabetes, as well as reducing complications and improving quality of life for individuals living with the disease. Visit https://diabetesresearchconnection.org to learn more about current projects and support these efforts.

Learn More +

Type 1 Diabetes and the Coronavirus (COVID-19)

Those with Type 1 Diabetes (T1D) are members of an exclusive club which is more vulnerable to the effects of the Coronavirus (COVID-19), once it is contracted. Click here to learn more. We encourage you to follow the World Health Organization’s protective recommendations.

While T1D‘s are not at a greater risk of contracting the disease, it is important to take precautionary measures. These include measuring your blood glucose levels frequently and keeping them in the normal range. This will help ensure greater resistance and a faster recovery. More frequent monitoring of ketones is critical, especially if your blood glucose is elevated due to sickness, cold therapeutics containing sugar or syrup and inactivity. Steroidal decongestants are also likely to increase your blood glucose levels. Diabetic ketoacidosis (DKA) may exhibit flu-like symptoms, which is why it is important to measure ketones with test strips available from your local pharmacy or online. Additional amounts of insulin may be required under these circumstances. Contact your physician(s) immediately if you have been exposed to the virus or have symptoms.

Be sure to stock an adequate supply (a minimum of two weeks) of all your medications. For more advice managing T1D during this pandemic, please visit: https://www.jdrf.org/coronavirus/.

For the latest updates on the global impact of COVID-19 go to: https://www.worldometers.info/coronavirus/.

Learn More +

Scientists Found a Way to Generate Insulin-Producing Beta Cells

More than one million people in the United States are living with type 1 diabetes according to statistics from the Centers for Disease Control and Prevention. There is a strong push to improve management of the disease and find a cure. The more researchers learn about T1D, the more precise their prevention and treatment methods become.

A recent study reveals that improvements in stem cell therapy have reversed T1D in mice for at least nine months and, in some cases, for more than a year. One of the challenges that scientists have faced with using human pluripotent stem cells (hPSCs) is that it can be difficult to zero differentiation in one specific type of cell. Often multiple types of pancreatic cells are produced. While there may be an abundance of cells that scientists want, the infiltration of excess cells that are not needed diminishes their impact (even though they are not harmful).

Scientists at the Washington University School of Medicine in St. Louis have found a way to generate insulin-producing beta cells without creating as many irrelevant cells. Their approach focuses on the cell’s cytoskeleton, which is its inner framework. Through this process, they were able to produce vast amounts of beta cells that are able to normalize blood glucose levels.

When transplanted into severely diabetic mice (blood glucose levels above 500 mg/dL), the cells effectively reversed the effects of diabetes and brought blood sugar levels down into target range within two weeks. Normoglycemia was maintained for at least nine months.

This is a major step forward in stem cell therapy and the use of hPSCs to potentially cure diabetes one day. There is still more testing and research that needs to be done before this approach is applied to human trials.

Ongoing research is essential for finding a cure for T1D. Diabetes Research Connection supports these efforts by providing critical funding to early-career scientists pursuing novel research studies on the disease. By giving them the means to complete their projects, these researchers can continue to advance knowledge and treatment options. Learn more about current studies and how to help by visiting https://diabetesresearchconnection.org.

Learn More +

Improved Beta Cell Function of Transplanted Islet Cells in T1D

One of the major challenges of using transplanted islet cells in the treatment of type 1 diabetes is cell death. Due to cellular stressors, poor oxygenation or vascularization, autoimmune response, and other factors, not all transplanted cells survive, and this can make treatment less effective. The body needs functional insulin-producing islet cells in order to effectively regulate blood sugar levels.

A recent study found that coculturing allogeneic islet beta cells with mesenchymal stromal cells (MSCs) may improve not only cell survival, but function as well. After donor cells are procured, they must be cultured and tested before being transplanted. This can generate significant cellular stress including hypoxia or low oxygenation, which can in turn lead to cell death. However, researchers found that MSCs support islet cells during this culture period by improving oxygenation and insulin secretion.

They also found that in response to these stressors, MSCs actually initiate mitochondria transfer to the islet beta cells.  This may improve mitochondrial ATP generation which plays an integral role in controlling insulin secretion. As a result, as glucose levels around the beta cells increased, so did their production and secretion of insulin.

Researchers experimented with this coculturing process with both mouse cells and human cells and found that human cells have a greater response and higher level of MSC-mediated mitochondria transfer that occurs. Though more extensive testing is necessary, these results show that MSCs may be an essential part of clinical islet transplantation and improved efficacy of beta cell function in treating individuals with type 1 diabetes.

Diabetes Research Connection (DRC) is interested to see how this study evolves moving forward and what it may mean for future therapeutic treatments for the disease. The DRC, though not involved in this study, provides critical funding for early career scientists pursuing novel, peer-reviewed research projects for type 1 diabetes. Learn more about current projects or how to support these efforts by visiting https://diabetesresearchconnection.org.

Learn More +

Type 1 Diabetes Vaccine Shows Positive Results

In an effort to prevent or delay the onset of type 1 diabetes, researchers have been striving to create an effective vaccine. One of the challenges is that there are many different subgroups of type 1 diabetes, meaning not all patients respond the same. A recent study found that patients who had a specific human leukocyte antigen (HLA) showed a “positive and statistically significant dose-dependent treatment response” to the Diamyd vaccine, especially when given four doses rather than two.

Compared to patients who received a placebo, those who received a higher number of doses of the Diamyd vaccine had a “statistically significant treatment effect of approximately 60%” within 15 months. These findings may help to advance the development of antigen-specific immunotherapy options for individuals with type 1 diabetes leading to improved treatment or management of the disease.

Diabetes Research Connection (DRC) is interested to see how this vaccine continues to evolve moving forward and what it could mean for the prevention of type 1 diabetes in the future. Though not involved with this study, the DRC provides early career scientists with funding necessary to conduct novel, peer-reviewed research projects around type 1 diabetes in an effort to improve understanding, prevention, treatment, and management of the disease. To learn more or donate to a current project, visit https://diabetesresearchconnection.org.

Learn More +

Improved Protection for Transplanted Stem Cell-Derived Islets

Insulin-producing beta cells are essential for effective blood sugar control. However, in individuals with type 1 diabetes, these cells are mistakenly destroyed by the immune system. That means exogenous insulin must be used instead to manage blood sugar. For years, scientists have been researching ways to replace or reproduce these islet cells. Two of the most common challenges faced, however, have been the need for long-term immunosuppression to protect transplanted cells from rejection, and limited availability of donor cells.

A recent study found that an improved source of encapsulation may protect islet cells from an immune response without decreasing their ability to secrete insulin. By using a conformal coating that is only a few tens of micrometers thick (as opposed to hundreds of micrometers thick), not only could insulin flow more freely through the encapsulation, so could oxygen, nutrients, and glucose as well. Yet larger immune cells were still unable to penetrate the barrier. In addition, the thinner coating allowed for more cells to be contained in a smaller space, and the capsule could be implanted in a wider range of locations so long as there was strong vascular function.

The encapsulated cells were implanted in NOD-scid mice and compared with non-coated stem cells as well as human islets. There were no statistically significant differences in performance of the cells and their ability to regulate glucose levels. The mice all showed a reversal in diabetes with the transplanted cells and returned to hyperglycemia once the cells were explanted.

The use of a microencapsulation method allows for more variability in placement of transplanted cells and helps protects against hypoxia-induced islet death and cell rejection. Furthermore, the thinner coating enabled islets to obtain better oxygenation because they are closer to blood vessels. It also allowed insulin to be secreted more quickly because it flowed more freely through the barrier.

One drawback that researchers noted was that encapsulated islets are unable to shed dead cells because they are contained within the capsule and have a lower absolute quantity of insulin secretion when compared to non-coated stem cell-derived islets.

Through this study, the researchers concluded that, “CC (conformal-coated) mouse islets can reverse diabetes long-term in a fully MHC-mismatched model.” While additional research is necessary to explore the effectiveness of this process in humans, it is a step in the right direction toward one day potentially curing type 1 diabetes.

Though not involved with this study, Diabetes Research Connection (DRC) stays abreast of the latest advancements in the field and provides critical funding to early career scientists pursuing novel research studies for type 1 diabetes. It is through these types of projects that researchers are able to improve quality of life for individuals living with the disease and move closer to finding a cure. To learn more about current DRC-funded projects or support these efforts, visit https://diabetesresearchconnection.org.

 

Learn More +

Exploring Why the Immune System May Attack Insulin-Producing Beta Cells

Insulin-producing beta cells are essential for effective blood sugar control. However, in individuals with type 1 diabetes, these cells are mistakenly destroyed by the immune system. That means exogenous insulin must be used instead to manage blood sugar. For years, scientists have been researching ways to replace or reproduce these islet cells. Two of the most common challenges faced, however, have been the need for long-term immunosuppression to protect transplanted cells from rejection, and limited availability of donor cells.

A recent study found that an improved source of encapsulation may protect islet cells from an immune response without decreasing their ability to secrete insulin. By using a conformal coating that is only a few tens of micrometers thick (as opposed to hundreds of micrometers thick), not only could insulin flow more freely through the encapsulation, so could oxygen, nutrients, and glucose as well. Yet larger immune cells were still unable to penetrate the barrier. In addition, the thinner coating allowed for more cells to be contained in a smaller space, and the capsule could be implanted in a wider range of locations so long as there was strong vascular function.

The encapsulated cells were implanted in NOD-scid mice and compared with non-coated stem cells as well as human islets. There were no statistically significant differences in performance of the cells and their ability to regulate glucose levels. The mice all showed a reversal in diabetes with the transplanted cells and returned to hyperglycemia once the cells were explanted.

The use of a microencapsulation method allows for more variability in placement of transplanted cells and helps protects against hypoxia-induced islet death and cell rejection. Furthermore, the thinner coating enabled islets to obtain better oxygenation because they are closer to blood vessels. It also allowed insulin to be secreted more quickly because it flowed more freely through the barrier.

One drawback that researchers noted was that encapsulated islets are unable to shed dead cells because they are contained within the capsule and have a lower absolute quantity of insulin secretion when compared to non-coated stem cell-derived islets.

Through this study, the researchers concluded that, “CC (conformal-coated) mouse islets can reverse diabetes long-term in a fully MHC-mismatched model.” While additional research is necessary to explore the effectiveness of this process in humans, it is a step in the right direction toward one day potentially curing type 1 diabetes.

Though not involved with this study, Diabetes Research Connection (DRC) stays abreast of the latest advancements in the field and provides critical funding to early career scientists pursuing novel research studies for type 1 diabetes. It is through these types of projects that researchers are able to improve quality of life for individuals living with the disease and move closer to finding a cure. To learn more about current DRC-funded projects or support these efforts, visit https://diabetesresearchconnection.org.

 

Learn More +

Understanding the Impact of GABA on Insulin Secretion and Regulation

In order to manage blood glucose levels, pancreatic beta cells release insulin in pulses. These bursts of insulin help the body to regulate and stabilize blood sugar. In individuals with type 1 diabetes, however, the pancreatic beta cells that normally secrete insulin are mistakenly destroyed by the body. This leaves the body unable to effectively regulate blood sugar on its own. Understanding the interaction between insulin-producing beta cells and other processes in the body may help researchers improve treatment and prevention options when it comes to diabetes.

A recent study examined the different roles gamma amino-butyric acid (GABA) plays in cell activity. In the brain, GABA is released from nerve cell vesicles each time a nerve impulse occurs. The GABA prepares cells for subsequent impulses by working as a calming agent. Researchers previously believed that this process worked in much the same way in the pancreas.

However, in the pancreas, GABA is evenly distributed throughout the beta cells rather than contained within small vesicles, and it is transported via the volume regulatory anion channel. This is the same channel that helps stabilize pressure inside and outside of cells so that they maintain their shape. Furthermore, research showed that GABA is released in a similar pattern and frequency as pulsatile in vivo insulin secretion. Just like in the brain, GABA plays an integral role in preparing and calming cells to make them more receptive to subsequent insulin pulses.

Scientists are interested in learning more about how GABA signaling can support the regulation of insulin secretion and potentially protect cells from autoimmune activity. This opens new doors for biomedical research that has the ability to impact diabetes care.

It is encouraging to see different types of researchers all coming together and learning from and building upon one another’s work in order to advance understanding, prevention, and treatment of various diseases, including diabetes.

Diabetes Research Connection stays abreast of the latest discoveries in the field and supports early career scientists in contributing to this body of work by providing critical funding for their projects. It is essential that scientists have the resources to pursue novel research in order to develop improved prevention, treatment, and management options for type 1 diabetes. Learn more and support current projects by visiting https://diabetesresearchconnection.org.

Learn More +

Could Higher-Dose and Lower-Dose Insulin Glargine be Equally Effective in Managing Type 1 Diabetes?

In an effort to maintain greater blood-glucose stability throughout the day and minimize highs and lows, some individuals with type 1 diabetes use insulin glargine, which is a once-a-day, long-acting insulin. It is an analogue, or laboratory-created, insulin which has been modified to act more uniformly in managing glucose levels.

Insulin glargine comes in varying strengths, and a recent study found that there were no significant differences in safety or effectiveness between insulin glargine 100 U/mL and insulin glargine 300 U/mL when administered in children and adolescents. Data from 463 EDITION JUNIOR study participants between the ages of 6 and 17 were compared over 26 weeks. Of those participants, 233 were randomly assigned to insulin glargine 300 U/mL, and 228 were randomly assigned to insulin glargine 100 U/mL. Both groups continued to follow their normal routine for mealtime insulin but injected insulin glargine once per day.

Results showed that all participants experienced a reduction in HbA1c levels over the 26 weeks. However, there were fewer instances of severe hypoglycemia among participants using the insulin glargine 300 U/mL, though overall, results were comparable between groups. Both insulins were effective in achieving target study endpoints and did not demonstrate any unexpected safety concerns.

In comparing insulin glargine 100 U/mL and insulin glargine 300 U/mL, researchers may be able to use insulin glargine 300 U/mL as yet another treatment option for children and adolescents with type 1 diabetes. It is currently under review by the FDA, and researchers are evaluating data from a six-month safety follow-up.

It is encouraging to see that more options are being explored to meet the needs of individuals living with type 1 diabetes in order to maintain target glucose levels with fewer fluctuations. Diabetes Research Connection (DRC) will continue to follow these types of studies to see how they impact the future of diabetes management and accessibility to care.

DRC provides critical funding for early career scientists pursuing novel, peer-reviewed research studies for type 1 diabetes. Projects aim to improve prevention and treatment of the disease, as well as enhance quality of life and eventually find a cure. To learn more about current studies and support these efforts, visit http://diabetesresearchconnection.org.

Learn More +

Advancements in Characterizing Type 1 Diabetes Heterogeneity

No two people with type 1 diabetes are exactly the same. Each experiences disease progression differently, and the genetic and biological factors that impact this process differ as well. This can make understanding how type 1 diabetes initially develops and the risk factors involved more challenging.

A recent study examined islet autoimmunity and heterogeneity across a group of 80 individuals diagnosed with juvenile-onset type 1 diabetes. Some had only been recently diagnosed while others had been living with the disease for many years. The study evaluated immunological, genetic, and clinical differences between individuals in order to create more detailed profiles and stratify findings.

Blood samples were taken and testing conducted to determine T-cell response to various beta cell antigens including GAD65, islet antigen-2 (IA-2), preproinsulin (PPI), and defective ribosomal product of the insulin gene (INS-DRIP). Results show that some individuals were high responders showing T-cell proliferation for all four beta cell antigens, some were intermediate responders showing proliferation to one to three beta cell antigens, and the rest were non-responders who did not show any T-cell proliferation response to the tested beta cell antigens.

In addition, more than 80 percent of participants were categorized as high risk by having an HLA-DR-DQ genotype that is associated with development of type 1 diabetes. High responders also had higher non-HLA genetic risk scores than the other two groups. Another interesting finding was that individuals who had longer disease durations also showed an increase in beta cell-specific T-cell proliferation.

Though a larger study is needed to further build out full immunological heterogeneity and explore the interactions between different variables, this study is a strong starting point. Better understanding the complete profile of individuals with type 1 diabetes and how their body responds to different factors could lead to more individualized treatment to help manage the disease. Researchers can tailor treatment toward which beta cell antigens a person responds to, whether they or not they have high HLA-DR-DQ risk or not, as well as other variables.

The body of knowledge surrounding type 1 diabetes is always growing and improving. This is critical to advance prevention and treatment options. Diabetes Research Connection (DRC) supports early career scientists in pursuing novel research studies in order to continue moving understanding forward. Learn more about current projects and how to help by visiting https://diabetesresearchconnection.org.

Learn More +

Unraveling the Process of Fetal Pancreas Development

Cell replacement therapy has been at the forefront of type 1 diabetes research for many years. Researchers have explored different ways to reintroduce insulin-producing beta cells into the pancreas or stimulate the body to begin producing these cells once again. A major challenge is often rejection of the cells by the body, or limited sustainability due to poor vascularization or an autoimmune response.

However, a recent study looks at the function of human multipotent progenitor cells (hMPCs) during development of the pancreas in human fetuses. Scientists were able to safely recover live cells from fetal tissue during the second trimester of development. They found that hMPCs located within the tip of the epithelium contained both SOX9 ad PTF1A transcription factors. However, according to their research, “tip cells did not express insulin, glucagon, or amylase,” which demonstrated their lack of lineage-specific markers. That means that they were uncommitted cells and could potentially differentiate into any of the three major types of pancreatic cells: ductal, endocrine, or acinar.

The proportion of SOX9+/PTF1A+ cells greatly decreased during the second trimester, however.  They accounted for more than 60% of cells up to 13.5 weeks of gestation, but after that, there was a significant decrease over the following weeks to less than 20%. During the second trimester, hMPCs also begin the process of branching morphogenesis and divide between tip and truck cells.  Truck cells become ductal and endocrine cells, but tip cells become acinar cells.

As researchers gain a deeper understanding of how the pancreas develops and how cell expression and differentiation takes place, they may be able to enhance cell replacement therapy options. According to the study, “This first ‘snapshot’ of the transcriptional network of human pancreatic progenitors opens new avenue in understanding human pancreas development, pancreatic specification and supports our ultimate goal of understanding possible mechanisms for pancreas regeneration.”

Diabetes Research Connection (DRC) is interested to see how this research may influence future treatment options for individuals with type 1 diabetes.  By better understanding the pancreas at a cellular level, it could stimulate more advanced therapies. The DRC provides critical funding for novel, peer-reviewed research studies focused on the diagnosis, treatment, and eventual cure for type 1 diabetes. Early career scientists have the opportunity to move forward with their research and contribute to the growing understanding of the disease and treatment options. Learn more and support these efforts by visiting http://diabetesresearchconnection.org.

Learn More +

Where is the Diabetes Research Connection Heading in 2020?

Our vision is to support innovative scientific inquiry until diabetes is eliminated. Since 2015, we have funded 24 innovative, peer-reviewed type 1 diabetes (T1D) projects and distributed over $1M directly to early-career scientists, building a pipeline of talented T1D researchers. 100% of funds designated for research go directly to the scientists’ lab and we are committed to continuing this in 2020.

Our main initiative in 2020, and the next decade, is to establish a foundation of sustainable funding. Two new ways we hope to accomplish it are:

  1. Blue Circle Leaders: Our current Blue Circle Leader Community includes 10 families who have pledged consistent support of our mission and vision. There are varying levels of partnership and all help us build a pipeline of new T1D researchers. As a Blue Circle Leader, you will have access to exclusive opportunities and resources. Read more about becoming a Blue Circle Leader here.
  2. Name a Research Project: Name an entire Research Project after your family, foundation or loved one affected by T1D. Funding an entire grant gives you exclusive access to the researcher for individual updates about the progress of their project and recognition in all published materials.

For a summary of the accomplishments in 2019, click here. We believe it takes a community to connect for a cure and together we make the difference!

Learn More +

2019 Year in Review

With the generosity of our supporters, we funded seven innovative, peer-reviewed type 1 diabetes (T1D) projects, bringing the total to 24, and have several others in the pipeline that will go live on our website in early 2020. We are incredibly proud to share that one of our sponsored early-career scientists, Peter Thompson, Ph.D., is starting his own lab in Canada to further develop a significant breakthrough that may prevent T1D.

One of our new Scientific Review Committee (SRC) members, Holger Russ, Ph.D., from the Barbara Davis Center for Diabetes at the University of Colorado shared a note that sums up the past year for us, “Congratulations on the record number of submissions, word is spreading, attesting to your great work funding important projects driven by junior investigators in the T1D space.”

Our 225 supporters partner with us in giving of their time, energy and resources and we couldn’t be more grateful for everything they gave in 2019. Our 10 Blue Circle Members, including the first-ever named research project funded by the Tarson Family, joined us this past year to ensure sustainable funding for DRC.

Below are some highlights from 2019:

In January, A Sweet Life: The Diabetes Magazine, recognized one of our new projects as one of the 6 Diabetes Research Studies to Watch in 2019, Marika Bogdani, MD, Ph.D., of the Benaroya Research Institute’s project, “Offensive ‘Blocking’ to Defeat T1D Before it Strikes!” This project seeks to uncover changes taking place in human islets that will indicate how to block diabetes before at-risk patients begin to exhibit symptoms.

Several of our partners hosted fundraisers in March. ‘Harrigan’s Hooligans against Diabetes’ hosted a St. Patrick’s Day fundraiser in Chicago at an Irish pub and one of our favorite local Italian restaurants, Il Fornaio, gave back a portion of sales from one evening to support new T1D research.

We hosted our first ever Ladies Night in April. Women gathered to share their stories of life with or caring for someone with T1D. “I left that night with fresh hope in finding a cure and new energy to work together to achieve this.”

In May, the Rancho Santa Fe Foundation hosted a “Meet the Researchers” event where Peter Thompson, Ph.D., shared an exciting update about the research he’s been doing and the possibility of finding a way to prevent T1D.

In June, Youjia Hu, Ph.D., at the Yale University Diabetes Center, provided an update for his project, A Bacteria in the Gut May Predict T1D. “Our results not only support the recent findings by other investigators using fecal samples but also our results support our hypothesis that oral microbiota might be used as a predictive biomarker for human T1D. We are currently further analyzing the sequencing data (~3 million) and we are confident that we will have interesting findings in the next progress report.”

In July, we funded several new projects: A Safe and Cost-Effective Stem Cell Approach for Treating Diabetes, Haisong Liu, Ph.D., at the Salk Institute for Biological Studies; Looking Beyond Beta Cells for Management of T1D, Camila Lubaczeuski, Ph.D. at the University Of Miami; Mice to Men, YongKyung Kim, Ph.D., at the University Of Colorado Anschutz Medical Campus Barbara Davis Center For Diabetes.

The 2nd annual Del Mar Dance for Diabetes was in September. Over 350 people joined us in connecting for a cure and we raised nearly $400,000! Guests enjoyed the food, music, drinks, silent auction and dancing under the stars at the silent dance party.

In November, we partnered with Tiffany and Philip Rivers in the Change the Game campaign. Tiffany and Philip Rivers’ eldest son, Gunner, was diagnosed with T1D when he was just five years old. The Change the Game campaign raised funds for JDRF, Insulin for Life and DRC and helped raise awareness during National Diabetes Awareness Month.

In December, we completed our $1M research campaign by distributing $1M to new T1D research projects. We had a record number of submissions and will be posting the approved projects on our website soon. Check back to see the innovative projects approved in 2019 by our esteemed SRC. Our Co-Founder and Chair of the Board, David Winkler, spoke at the STEAM Leadership “Diabetes Day” at the Salk Institute for Biological Studies. The event focused on educating and empowering high school students from San Diego, including Southeastern San Diego, around healthy living and future careers in research. Click here to watch David’s speech.

We are committed to funding innovative scientific inquiry until diabetes is eliminated and could not do what we do without the continued support of our community. Thank you for being a part of the DRC family. It takes a community to connect for a cure!

 

Learn More +

Is Cannabis Use Safe for Individuals with Type 1 Diabetes?

Cannabis use has been a hot topic in recent years with more states legalizing recreational use in addition to medicinal use. Just like any drug, cannabis has its risks and benefits which can vary from person to person depending on their individual situation.

A recent study looked at how cannabis use may impact individuals with type 1 diabetes in regard to diabetic ketoacidosis (DKA). DKA occurs when the body does not make enough insulin and ketones build up in the bloodstream due to the breakdown of fats instead of sugars.

The study found that moderate cannabis users with type 1 diabetes are twice as likely to develop DKA than non-users. Researchers used data from 932 adults who participate in the T1D Exchange clinic registry (T1DX).

It is important for individuals with T1D to understand the risks associated with using cannabis and how it can potentially affect their overall health and well-being, especially in regard to diabetes management. DKA can develop very quickly and can be potentially fatal if left untreated.

Though not involved in this study, the Diabetes Research Connection (DRC) supports early career scientists in pursuing novel research studies to advance understanding of T1D as well as improve diagnosis, treatment, and prevention strategies. Learn more about current projects and how to support these efforts by visiting http://diabetesresearchconnection.org.

 

Learn More +

Controlling Beta Cell Proliferation and Apoptosis to Manage Type 1 Diabetes

A key indicator of type 1 diabetes is lack of insulin-producing beta cells in the pancreas. These cells are mistakenly attacked and destroyed by the immune system leaving individuals unable to naturally manage their blood sugar. With little to no production of insulin, the body cannot effectively process sugars and use them as fuel. Instead, individuals must constantly monitor their blood glucose levels and administer insulin as needed.

However, a recent study uncovered how an FDA-approved drug for treating breast cancer may also be effective in diabetes care. Neratinib is a dual inhibitor of HER2 and EGFR kinases, but researchers have also found that it is incredibly effective at blocking mammalian sterile 20-like kinase 1 (MST1) as well. MST1 plays a key role in regulating beta cell proliferation and apoptosis. By inhibiting MST1 expression, insulin-producing beta cells may be protected from this process leading to greater beta cell survival and improved function.

In addition, when mouse models and human islets were treated with neratinib, they showed a marked improvement in glucose control and maintained lower overall glucose levels. The drug also restored expression of specific transcription factors such as PDX1 that contribute to glucose metabolism and insulin production.

Neratinib is an FDA-approved cancer treatment drug currently being used for breast cancer, but its effectiveness in treating other forms of cancer is being explored as well. Now researchers are examining whether its indications could be expanded to include diabetes.  While it has been proven safe in cancer treatment, scientists are looking at ways to decrease its toxicity and improve specificity for diabetes.

In its current form, neratinib does not only target MST1 – it inhibits other kinases as well. Furthermore, there is concern that an extreme decrease in beta cell apoptosis could lead to increased expression of other cell types which could impact health. However, researchers can use this study as a foundation for exploring ways in which to refine the drug and improve beta-cell protection and function while minimizing other effects.

Diabetes Research Connection (DRC) is interested to see how this study impacts future treatment and prevention efforts in regard to type 1 diabetes. The DRC provides critical funding to early career scientists pursuing novel, peer-reviewed research projects focused on prevention, treatment, and improvement of quality of life for individuals living with the disease. This support can lead to scientific breakthroughs and have a significant impact on understanding of type 1 diabetes. To learn more about current projects and how to support these efforts, visit http://diabetesresearchconnection.org.

Learn More +

Leveraging the Power of Light to Manage Type 1 Diabetes

A common problem in managing type 1 diabetes is maintaining relatively stable blood glucose levels. By the time a person realizes their blood sugar is rising or falling and begins to treat it, they may already experience spikes. This can be tough on the body and lead to over- or undertreatment in an effort to curb the highs or lows. Though technology has made it faster and easier to track blood glucose levels and more accurately administer insulin, it’s still not a perfect system.

A recent study reveals that researchers may have come up with a way to manage blood sugar without manually administering insulin. They engineered pancreatic beta cells to be responsive to exposure to blue light. By introducing a photoactivatable adenylate cyclase (PAC) enzyme into the cells, they produce a molecule that increases insulin production in response to high levels of glucose in the blood.

The molecule is turned on or off by blue light and can generate two to three times the typical amount of insulin produced by cells. However, it does not boost production when glucose levels in the blood are low. Furthermore, the cells do not require more oxygen than normal cells, which helps alleviate the common issue of oxygen starvation in transplanted cells.

The study was conducted on diabetic mice, so more research is needed to determine whether the process will be as effective in humans. If it is, this could mean that individuals with type 1 diabetes may have an option for controlling blood sugar levels without pharmacological intervention. When paired with a continuous glucose monitor (CGM) or other device as well as a source of blue light, it could create a closed loop model of managing the disease by functioning as a bioartificial pancreas.

This could be potentially life changing for individuals living with type 1 diabetes, and Diabetes Research Connection (DRC) is excited to see how the study progresses. Though not involved with this project, the DRC supports advancement of type 1 diabetes research and treatment options by providing critical funding for early career scientists pursuing novel research projects. Learn more by visiting http://diabetesresearchconnection.org.

Learn More +

Improving Vascularization of Transplanted Islet Cells

One option that researchers have explored for treating type 1 diabetes is cell transplantation. By introducing new pancreatic islet cells, they aim to better control glucose levels and insulin production. However, there are still many challenges surrounding this approach including cell death due to poor vascularization.

Pancreatic islet cells are highly vascularized in order to quickly and easily transport insulin. If they are not able to establish blood vessel connections following transplantation, they cannot work as effectively and may not survive long-term. A recent study has found an improved method for promoting vascularization and enabling more effective cell transplantation.

A multidisciplinary team of researchers developed a biomimetic microvascular mesh that maintained its shape and promoted the survival of transplanted cells by stimulating revascularization. When transplanted into diabetic mouse models, they were able to maintain normoglycemia for up to three months.

The researchers created micropillars to improve anchoring of the microvascular mesh and decrease risk of shrinkage as cells matured. They had success using both human umbilical vein endothelial cells (HUVECs) and human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) in the meshes. Compared to a mesh without these cells, the mesh with the cells showed both anastomoses and vascular remodeling which are essential in vascularization during cell replacement therapy.

Though they have only been tested in mouse models, biomimetic microvascular mesh could one day be used to improve cell replacement therapy for humans with type 1 diabetes in order to improve glycemic control. This study opens doors for additional research and further refining islet transplantation methods.

Though not involved with this study, Diabetes Research Connection (DRC) supports novel research projects that strive to advance treatment for type 1 diabetes and one day find a cure. Early career scientists can receive up to $75K in funding from donations by individuals, corporations, and foundations to support their research. Learn more by visiting http://diabetesresearchconnection.org.

Learn More +

Expanding Type 1 Diabetes Research Through Marmoset Models

It is not uncommon for researchers to use animal models for initial research before transitioning to human clinical trials. Many animals’ systems are biologically similar in nature to humans and respond in similar ways to various diseases and medications. Often mouse models are used for diabetes research, but other species such as nonhuman primates (NHP) are also advantageous. While various types of monkeys and baboons have been used to study diabetes pathogenesis and treatment, there was previously not a marmoset model.

In a recent study, researchers successfully induced type 1 diabetes mellitus in marmosets. They conducted a partial pancreatectomy and administered streptozotocin (STZ) to decrease and destroy insulin-producing beta cells. This led to the marmosets having higher sustained blood glucose levels (above 200 mg/dL) and the inability to manage their condition through natural insulin production. Instead, they were injected with exogenous human insulin which brought their glucose levels back into the target range. Researchers found that they had a high sensitivity to human insulin making them a valuable NHP model.

Multiple glucose and insulin tolerance tests were conducted to determine how the diabetic marmosets responded compared to normal marmosets and whether they would be suitable candidates for future testing regarding islet transplantation. Continuous glucose monitors (CGM) were used to compare normal marmosets with diabetic marmosets as well, further showing that diabetic marmosets had consistently higher blood glucose levels, especially following meals, much like humans with type 1 diabetes.

While additional research is necessary, researchers believe that marmoset models could play an integral role in type 1 diabetes research and the advancement of preclinical testing. They were able to effectively induce diabetes in the marmosets and control it using human insulin, so the next step would be to move to cell transplantation trials. Eventually these transplant models may translate to human clinical trials and enhance diabetes treatment options.

It is these types of studies and use of animal models that help to advance scientists’ understanding and treatment of type 1 diabetes and allow them to work toward a cure. Diabetes Research Connection (DRC) is interested to see how marmoset models will influence the future of diabetes care.

DRC is committed to supporting early career scientists in pursuing novel, peer-reviewed research regarding type 1 diabetes. Researchers can receive up to $75K in funding for their projects allowing them to move forward with their work. Learn more about current projects and how to help by visiting http://diabetesresearchconnection.org.

Learn More +

Exploring the Use of Targeted Proteins in Managing Type 1 Diabetes

Currently, the most effective treatment for type 1 diabetes is the administration of insulin, but this is not a perfect solution. Since the body is unable to produce enough – or in some cases any – insulin on its own, individuals are tasked with carefully determining when and how much they need to keep blood sugar levels in check. This in itself can be challenging, and too much or too little insulin can lead to potentially life-threatening hyper- or hypoglycemia.

In addition to controlling blood sugar, insulin also helps regulate ketones within the blood. Ketones are created when lipids are broken down by the liver because the body is lacking glucose. Increased ketone levels can lead to diabetic ketoacidosis. Trouble controlling fat in the blood can put individuals at a greater risk for cardiovascular problems.

However, a recent study by researchers at the University of Geneva in Switzerland reveals that combining insulin with high doses of the protein S100A9 may improve regulation of glucose as well as lipids. Though it has only been tested in insulin-deficient diabetic mice thus far, the researchers are in the process of gaining approval for phase I human clinical trials. Other studies have already shown that there is a reduced risk of diabetes in individuals with higher levels of S100A9, so they are hopeful that this protein can play an integral role in diabetes management as well.

Another interesting discovery that the researchers made was that S100A9 was only effective when cells with TLR4 receptors were present as well. At this point, they are unsure exactly what the relationship is and why TLR4 is necessary for the process to work. However, their study leads the way toward reducing the amount of insulin necessary to effectively control blood glucose and ketone levels by combining it with the S100A9 protein.

Though not involved in this study, Diabetes Research Connection (DRC) is excited to see how it progresses once human clinical trials begin as it has the potential to impact treatment for millions of people living with type 1 diabetes. The DRC supports the advancement of research and treatment through providing critical funding to early career scientists pursuing novel research studies for the disease. Find out how to support these efforts and learn more about current projects by visiting https://diabetesresearchconnection.org.

Learn More +

Islet Transplantation May Have Long-Term Benefits for Type 1 Diabetes.

Islet transplantation is not a new concept, but it is one that scientists are continually trying to refine and improve. A major challenge with this procedure is rejection or destruction of the transplanted cells. However, researchers followed up with a group of 28 patients who had undergone islet transplantation and found that 10 years later, there were still lasting benefits.

A recent study looked on how patients fared a decade after receiving transplants. Fourteen of the patients received only an islet transplant, while the other 14 had a kidney graft in addition to the islet transplant. Regardless of procedure, researchers found that “28% remained completely independent of exogenous insulin” after 10 years, a slight decrease from the 39% who were independent of insulin use after five years. However, even those participants who did return to needing insulin had improved glycemic control and a lower exogenous insulin requirement than prior to transplantation. In addition, they had fewer severe hypoglycemic events.

A major factor in the effectiveness of the transplant was graft function. Those individuals who had optimal graft function maintained insulin independence longer than those who had poorer graft function. Immunosuppression was used to help support graft survival, but there were some serious adverse events as a result. In the 28 participants, there were eight instances of infections or skin carcinomas and 11 diabetes-related events that were cardiovascular.

Five participants experienced symptomatic cardiovascular events and six experienced asymptomatic myocardial ischemia. One person died of a stroke. However, researchers report that “mortality rate in patients similar to those in the current study but who did not undergo islet transplantation is three to four times higher with causes of death largely being severe hypoglycemia or ischemic heart disease.”

It is encouraging to see that a decade after islet transplantation, participants are still experiencing positive outcomes in regarding to diabetes management, with some maintaining insulin independence. As researchers continue to learn more and are able to refine and improve islet transplantation, more patients may benefit long-term from this treatment option and potentially achieve insulin independence.

Diabetes Research Connection (DRC) stays abreast of the latest findings in the field and provides critical funding for early career scientists to pursue research related to type 1 diabetes. It is through this work that improved treatments become available and scientists enhance their understanding of the disease. Learn more about these efforts and how to support existing projects by visiting https://diabetesresearchconnection.org.

Learn More +

Could Closed-Loop Systems Improve Blood Glucose Management?

One of the latest technologies being tested for managing type 1 diabetes is a closed-loop system. This system uses a continuous glucose monitor (CGM) to measure blood glucose levels. When blood sugar begins to rise outside of the target range, it sends information to an insulin pump to automatically administer insulin. When blood sugar begins to fall, insulin is not administered. It is a closed loop because the patient is not deciding when to inject insulin or how much, but rather the system does so automatically.

A recent study involving 168 individuals with type 1 diabetes between the ages of 14 and 71 were part of a six-month trial using a closed-loop system. One hundred and twelve people were randomly assigned to the closed-loop group while the remaining 56 people used a sensor-augmented pump and were considered the control group. All 168 participants completed the trial. There were no incidences of hypoglycemia and only one incidence of diabetic ketoacidosis, which occurred in the closed-loop group.

The results showed that the closed-loop group remained in the target range for glucose levels (70-180 mg/dL) a greater percentage of time than those in the control group. On average, their time in the target range increased from 61% to 71%, while the control group remained around 59%. In addition, the closed-loop group spent less time with glucose levels above 180 mg/dL or below 70 mg/dL. Throughout the duration of the six-month trial, participants in the closed loop group remained in closed-loop mode (with the system automatically managing glucose monitoring and insulin administration) a median of 90% of the time.

While the closed-loop system is not perfect, these findings show that it improved time spent in the target glucose range, which is desirable in diabetes management. It also reduces the manual tracking and input from individuals with type 1 diabetes in managing the disease. While more research and testing are needed, it is a step in the right direction toward developing what many refer to as an “artificial pancreas.”

Diabetes Research Connection (DRC) is interested to see how this system will continue to advance and improve diabetes management in the future and continues to follow its progress.  These types of devices play an integral role in supporting individuals with T1D and helping them to maintain more normal blood glucose levels. The DRC supports early career scientists in pursing novel research studies geared toward improving understanding, diagnosis, and treatment of T1D with the goal of one day finding a cure. Learn more about these efforts and how to help by visiting http://diabetesresearchconnection.org.

Learn More +

Arielle Schube World Diabetes Story

My story began during the summer of 2016, the summer before my freshman year of high school. In July, I went to camp for three weeks in San Bernardino, California. The first week of camp I went on a four-day hiking trip to Sedona, Arizona in 100-degree weather. During the hiking trip, I felt a slight cold coming on, I assumed it was from heat and physical exhaustion. When I returned to camp after the hiking trip, I found myself in my own personal hell. At night, I lay on the cold, bathroom floor tile because my body was too hot for my bed and I was too weak to climb down from the top bunk every time I felt the urge to throw up. I could not take it anymore. I dragged myself to the nurse’s office and begged the nurse to take me to a hospital. After hours of convincing the camp nurse that something serious was happening to me, she finally agreed to take me down the mountain to the local hospital.

Not only was I screaming and moaning the entire drive down because the pain endured, but I was also experiencing small blackouts. By the time all the blood tests were completed, I was barely conscious. Soon, a doctor approached me and said, “You have type 1 diabetes.” I looked at him, then my counselor, and then the doctor again. I almost wanted to laugh and say, “What? This is a joke, this isn’t happening, right?” Then I looked at my counselor and said, “Where are my parents?”

The only memory I have after the doctor gave me the devastating news is lying in a helicopter with paramedics on either side of me. I spent the next five days in the hospital, the first two days in the ICU. When I was diagnosed, I was in a diabetic coma. I had Diabetic Ketoacidosis (DKA), a serious life-threatening complication of diabetes where the body produces excess ketones and if left untreated, can be fatal. My blood sugar was over 800 mg/dL and my blood tests showed that I’d been living with type 1 diabetes (T1D) for three months prior to my diagnosis. At the age of 13 years old I advocated for myself, for my life and for my future. If I did not have the will to fight, it is very likely that I would not be here today. My near-death experience has changed my life and will continue to shape my daily actions, thoughts and feelings. My desire to live life to the fullest and courage to speak publicly about my disease is what motivates me every day to push through the difficult days living with T1D.

Learn More +

The Story of a Combat Veteran Making a Difference in the T1D Community – Naithen Schirmer

Today is a day we honor all veterans and give thanks for their sacrifice. As a combat veteran, I know firsthand the sacrifices made daily by those who serve or have served. When I was a young boy, I would sit around and listen to the men in my family share their stories about their time in the military and knew that I would follow in their footsteps one day.

In 2009, I joined the Army and soon after was deployed to Iraq with the 2nd Brigade Combat Team, 1st Infantry Division. While in Iraq, I advised and assisted in training the U.S. military personnel as well as the Iraqi Army and Iraqi Special Forces in night vision special electronics, thermal imagery and tactical satellite communications.

I’ll never forget a conversation I had with a local Iraqi towards the end of my time there. I was at Camp Liberty in Baghdad and the U.S. was shutting down the base and handing everything over to the Iraqi’s. During my time in Iraq, I did not interact much with the local civilians, but since we were transitioning this base over, I was able to. After connecting with one man in particular, I realized that we had the same goals. Even though we came from different cultures and were very different from each other, we both wanted the same things; love, to do right by our family and keep them happy, healthy and safe. Finding a connection like this in the middle of a war zone was rare and something I will always remember.

After four years of service with the storied 1st Infantry Division, aka the Big Red One, I was medically retired and pursued a Bachelor of Science degree in Marketing from Point Loma Nazarene University. My heart for service did not end with the military. After graduating with my degree, I began a career in the nonprofit sector. Several of my family members have diabetes so I know how devastating the disease is. Working with the Diabetes Research Connection (DRC) as the Administrative Assistant is incredibly rewarding because I have an opportunity to be a part of a community working hard to find a cure. The early-career scientists I have the pleasure of working with at DRC have innovative research ideas and it gives me hope that their scientific breakthrough may be what leads to a cure for my family members and all those affected by type 1 diabetes.

Being involved in the community is important to me so I also volunteer my time at the Veterans of Foreign War as a Junior Vice Commander, a mentor to children of military personnel who have either died in combat or due to PTSD-related suicide while serving on active duty at a local nonprofit called Active Valor, and as the Podcast Creator and Director for Triple B Adventures.

Learn More +

Improved Transplantation of Islet Organoids May Support Type 1 Diabetes Treatment

One approach to treating type 1 diabetes is transplanting insulin-producing beta cells into the body, or cells that can develop to perform this function. However, there are still many challenges in getting the body to accept these cells without extensive immunosuppression. Even still, the cells often have a limited survival rate.

In a recent study, scientists examined the potential of creating insulin-producing organoids to regulate blood sugar and treat type 1 diabetes. They combined dissociated islet cells (ICs) with human amniotic epithelial cells (hAECs) to form islet organoids, or mini pancreas-like organs. These organoids, which can contain multiple types of cells and cell functions, were transplanted into the portal vein because the area is easily accessible and has a low morbidity rate.

In similar approaches, researchers have been faced with cell death due to poor revascularization of the transplanted cells as well as inflammation. However, in this study, they found that by introducing hAECs, they were able to curb some of these effects. hAECs not only secrete proangiogenic growth factors, but anti-inflammatory growth factors as well including insulin-like growth factors and associated binding proteins. Furthermore, they produce high levels of hyaluronic acid which suppresses tumor growth factor β and stimulates VEGF-A production which supports improved revascularization. They also found that hAECs improved protection of IC-hAEC organoids against hypoxic stress thereby reducing risk of cell death.

Results showed that 96% of diabetic mice who received IC-hAEC organoid transplants achieved normoglycemia within one month. The median rate for this process to occur was 5.1 days. In addition, at one-month post-transplant, the mice showed similar glucose clearance as non-diabetic mice.

While this study has only been performed on mouse models so far, the goal is to achieve similar results in human trials. Additional research and testing are needed to determine if the process is translatable. This approach has the potential to improve management of type 1 diabetes and could lead to a possible cure for the disease if results are sustainable in the long-term.

Though not involved in this study, Diabetes Research Connection (DRC) supports advancements in type 1 diabetes research and treatment by providing critical funding to early career scientists. It is these types of studies that assist in transforming the future of diabetes care. Learn more and support these efforts by visiting http://diabetesresearchconnection.org.

Learn More +

Connect For A Cure: November 2019 Newsletter

The word is getting out, we have some exciting new research updates for you.

We had a record number of early-career scientists submit their research project proposals for funding this year. You can view the new projects in early 2020. We continue to see early-career scientists go on to do amazing things. Wendy Yang, Ph.D., was published for a second time, in the US National Library of Medicine National Institute of Health and as a result her DRC funded project is getting more exposure. Peter Thompson, Ph.D., one out of 20 early-career scientists DRC has supported was just given the opportunity to start his own lab in Canada.

Click on the link below to read more about what we’ve been up to and the impact we are making together. It takes a community to connect for a cure!

November 2019 Newsletter

Learn More +

Rotavirus Vaccine May Reduce Risk of Type 1 Diabetes

There is no single factor that is entirely responsible for the development of type 1 diabetes. Scientists believe that both genetic and environmental factors play a role. One area that they are examining more closely is the impact of enteroviruses. Studies have found that since the introduction of two rotavirus vaccines in 2006 and 2008, the incidence of type 1 diabetes in children has decreased.

A recent study compared data from 2001 to 2017 for nearly 1.5 million infants in the United States. They looked at the incidence rate of type 1 diabetes in those who received the full series of either rotavirus vaccine (pentavalent RotaTeq or monovalent Rotarix), those who received only partial vaccination, and those who were unvaccinated either by parental choice or because the vaccinations had not yet been developed. They also looked at incidence rates among children who received both a rotavirus vaccine and the diphtheria, tetanus, and pertussis (DTaP) vaccines at the same time, and those who received only the DTaP vaccines.

While partial vaccination had no impact on risk of type 1 diabetes, infants who completed the rotavirus vaccine series showed a 33% reduction in risk, with those receiving the pentavalent vaccine experiencing a 37% lower risk. In addition, children who were vaccinated had lower hospital admission rates due to enteroviruses within 60 days of being vaccinated than children who were unvaccinated. According to the study, in terms of type 1 diabetes risk, “Overall, there was a 3.4% decrease in incidence annually in children ages 0-4 in the United States from 2001-2017, which coincides with the vaccine introduction in 2006.”

When the rotavirus and DTaP vaccines were administered together, there was a 56% reduction in risk of developing type 1 diabetes than when DTaP vaccines only were given. This leads scientists to believe that the rotavirus vaccine plays an integral role in risk reduction. While it does not entirely prevent infants from developing type 1 diabetes at some point in their life, it may reduce their risk of the disease.

Previous studies have shown that rotavirus infection may increase the destruction of insulin-producing beta cells in diabetes-prone mice. In addition, children who had multiple rotavirus infections had increased islet antibody levels which may contribute to islet autoimmunity, which in turn is linked to type 1 diabetes risk.

Though more research is necessary including longer longitudinal studies to determine if type 1 diabetes was prevented entirely or only delayed, this study is a step in the right direction toward potentially reducing diabetes risk. Encouraging families to get their children the rotavirus vaccine – which is covered at no cost under most health insurance plans – could be an effective strategy in decreasing risk of type 1 diabetes.

Diabetes Research Connection (DRC) is interested to see how these findings may impact the future of prevention efforts for type 1 diabetes and what additional research will discover. The DRC supports early career scientists in pursing novel research regarding type 1 diabetes including diagnosis, prevention, treatment, and management of the disease. To learn more about current projects and how to support these efforts, visit http://diabetesresearchconnection.org.

Learn More +

Exploring C-Peptide Persistence in Type 1 Diabetes

In diagnosing diabetes, be it type 1 or type 2, one of the key factors doctors look for is C-peptide levels. Traditionally, scientists have believed that low C-peptide levels indicated type 1 diabetes as the body is unable to produce an adequate supply (if any) of insulin, while higher C-peptide levels were associated with type 2 diabetes as the body made insulin but was unable to effectively use it.

However, a recent study shows that this may not be entirely accurate. In a large cohort study in Scotland, there was a broad range of variability in C-peptide persistence across individuals of different ages and duration of disease. Individuals who were older when diagnosed and were close to age of diagnosis had higher C-peptide levels than those who were adolescents when diagnosed and had been living with the disease for a longer period of time. Scientists believe this may point toward there being multiple genetic networks that impact diabetes risk.

The findings also showed that similar C-peptide levels may be present in individuals with adult-onset type 1 diabetes who did not immediately require insulin treatment as those who were diagnosed with type 2 diabetes. Many people with higher C-peptide levels also have increased amounts of proinsulin, which is a prohormone precursor to insulin. However, the cells do not respond to primary stimuli which could mean that they are in a stunned state. If this is the case, there is a potential that they could recover and once again play an active role in insulin production.

The ratio of proinsulin to C-peptide may also be influenced by genetic risk of diabetes. Both genetics and environmental factors may come into play regarding damage to beta cells and their ability or inability to produce insulin.

This study challenges previous understanding about the differences in type 1 and type 2 diabetes when it comes to diagnosis and treatment. There may be the potential to stimulate pancreatic beta cell function in individuals with type 1 diabetes depending on their levels of proinsulin, insulin, and C-peptide.

Diabetes Research Connection (DRC) is interested to see how this may impact the future of diagnosis and treatment of diabetes. It could certainly lead the way to more in-depth research opportunities, and the DRC provides critical funding to support these types of initiatives. Early career scientists can receive up to $75K from the DRC to pursue novel research projects focused on type 1 diabetes. To learn more, visit http://diabetesresearchconnection.org.

Learn More +

Could Improving Cell-to-Cell Communication Enhance Cell Replacement Therapy Options for Type 1 Diabetes?

Researchers have been exploring the potential of stem cell therapies for years, however this is a very challenging endeavor because there are many factors that influence cell development, differentiation, and fate. In the case of type 1 diabetes, researchers have been studying methods for preventing the destruction of insulin-producing beta cells, stimulating the generation of new cells, and directing differentiation of stem cells among other strategies.

In a recent study, scientists focused on enhancing cell-to-cell communication in order to influence differentiation of embryonic stem cells. They examined the role of Connexin 43 (Cx43) specifically, which is a gap junction (GJ) channel protein. Scientists found that by using the AAP10 peptide to activate Cx43 GJ channels, they could steer differentiation of cells toward definitive endoderm and primitive gut tube lineages. In turn, with improved communication between cells triggered by the AAP10 peptide, definitive endoderm cells were more likely to become pancreatic progenitors and pancreatic endocrine progenitors.

Pancreatic progenitors (PP) and pancreatic endocrine progenitors (PE) play a role in the development of pancreatic islet cells which produce insulin and glucagon. These are the same cells that the body mistakenly attacks and destroys in individuals with type 1 diabetes. The ability to influence the differentiation of human embryonic stem cells into PPs and PEs may support improved cell replacement therapies for diabetes.

There is still a great deal of research to be done as it is difficult to manipulate the mechanisms of cell communication in order to produce desired results. Scientists are also continuing to investigate whether improved intercellular communication could lead to an increased production of pancreatic islet cells.

Researchers involved in this study include Dr. Wendy Yang, Dr. Laura Crisa, and Dr. Vincenzo Cirulli. Yang’s research is funded by Diabetes Research Connection (DRC) and Crisa and Cirulli are part of the DRC’s scientific review committee. To learn more about the DRC and the funding it provides to support type 1 diabetes research, visit http://diabetesresearchconnection.org.

Learn More +

Antibody-Drug Conjugate May Help Reduce Allograft Rejection.

Cell transplantation has been an area of focus in developing treatment for type 1 diabetes. Many studies have examined both autologous and allogeneic transplants and the benefits and risks they provide. A major challenge continues to be rejection and the body’s destruction of these cells, whether initially derived from its own cells or not.

However, a recent study found that an anti-CD103 antibody-drug conjugate (M290-MC-MMAF) may reduce pancreatic islet allograft rejection in mice. This drug decreased the amount of CD103+CD8+ effector T cells while at the same time increasing the amount of CD4+CD25+ regulatory T cells. This balance led to improved survival rate of the allograft and supported immunosuppression without causing systemic toxicity. When CD103+CD8+ levels were increased, allograft rejection quickly followed.

While this study has only been conducted in mouse models, it shows potential for pancreatic islet allografts in treating type 1 diabetes. Further research is necessary to determine how this process translates to human cells. M290-MC-MMAF could eventually be used as a therapeutic intervention to reduce risk of allograft rejection in humans.

Diabetes Research Connection (DRC), though not involved in this study, stays abreast of the latest discoveries in the field and supports early career scientists in pursuing novel, peer-reviewed research projects related to type 1 diabetes. Scientists receive funding that is critical to conducting research and improving the diagnosis, treatment, and management of the disease and one day finding a cure. To learn more about current projects and how to support these efforts, visit http://diabetesresearchconnection.org.

Learn More +

Early Biomarker for Pancreatic Beta Cell Loss Related to Type 1 Diabetes Identified.

For years, researchers have known that pancreatic beta cell death plays a major role in the development of type 1 diabetes. They have been striving to detect this process early on in order to better assess risk for the disease and develop potential treatments to stop progression. When the body destroys insulin-producing beta cells, it is no longer able to effectively manage blood glucose levels resulting in type 1 diabetes (T1D), a condition that currently has no cure.

In a recent study, researchers used diabetic mice and serum samples from individuals with various stages of T1D as well as INS-1 cells and human islets “to detect an early biomarker of T1D-associated beta-cells loss in humans.” The enriched microRNA (miR-204) that they discovered is released by beta cells during cell death and is detectable in human serum. However, it is only present in elevated levels in individuals with T1D and those who are autoantibody positive, not in individuals with type 2 diabetes.

This discovery may play a role in improving early detection of pancreatic beta cell death prior to full onset of T1D. In turn, that may open doors to new research and developments in treatment in order to reduce risk of T1D.

Diabetes Research Connection (DRC) is excited to see what this discovery could mean for the future of T1D diagnoses and prevention efforts. The DRC supports early career scientists in pursuing novel, peer-reviewed research projects focused on the diagnosis, prevention, treatment, and eventual cure of type 1 diabetes. Learn more about current projects and how to support these efforts by visiting http://diabetesresearchconnection.org.

Learn More +

Could Gluten Impact HbA1c Levels?

Researchers know that type 1 diabetes involves the body’s immune system mistakenly attacking and destroying insulin-producing beta cells, and that this can be affected by autoantibodies and antibodies. However, the body produces antibodies in response to many diseases, including celiac disease.

In a recent study, researchers explored the relationship between patients with celiac disease achieving antibody-negativity versus staying antibody-positive and the potential impact on type 1 diabetes. When individuals with celiac disease stop eating gluten, the body stops producing specific antibodies that react to gluten. Tight management of the disease may produce antibody-negative results during testing. If the person continues to eat some gluten, they will remain antibody-positive.

Scientists compared 608 pediatric patients with type 1 diabetes (T1D) and biopsy-proven celiac disease with 26,833 patients with T1D only. They found that those patients with both diseases who remained antibody-negative had lower HbA1c levels than those who were antibody-positive. The study also showed that, compared to patients with only T1D, those who had both celiac disease and T1D and were antibody-negative had lower total cholesterol, LDL-cholesterol, and frequency of dyslipidemia as well.

Though more research is necessary, achieving constant antibody-negative status may be associated with improved metabolic control and growth and have an impact on HbA1c levels. This could lead the way to advancements in treatment options for individuals with celiac disease and type 1 diabetes and perhaps type 1 diabetes alone as well.

Diabetes Research Connection (DRC) stays abreast of the latest developments in the field and supports early career scientists in pursuing peer-reviewed, novel research studies on type 1 diabetes. It is through these types of projects that researchers learn more about diagnosis, treatment, and prevention of this disease and move closer toward finding a cure. Learn more about current projects and how to support these efforts by visiting http://diabetesresearchconnection.org.

Learn More +

Evaluating the Effect of Specific T Cells on Type 1 Diabetes Risk and Treatment

As researchers delve more deeply into trying to understand the origins of type 1 diabetes (T1D), they become increasingly aware that there is not a single disease pathogenesis, but rather multiple paths that vary from person to person. While they know that T1D results from the immune system attacking and destroying insulin-producing beta cells in the pancreas, there may be several different factors that contribute to this risk.

A recent study examined a variety of T cells, T cell receptors, antigens, and autoantibodies that may play a role in the development of T1D. One common factor they found was that individuals with an elevated level of islet autoantibodies in the peripheral blood are at increased risk of developing T1D within their lifetime. Researchers also know that in addition to risk genes, human leukocyte antigen (HLA) genes and the autoantibody glutamic acid decarboxylase (GAD) could vary from person to person and impact the effectiveness of targeted therapies. Children who possess two or more islet autoantibodies have around an “85% chance of developing T1D within 15 years and nearly a 100% lifetime risk for disease development.”

However, the mere presence of islet autoantibodies does not demonstrate disease state, because it could be years before clinical T1D presentation. In its early stage (stage 1), while the autoantibodies are present, beta cell function remains normal. As risk for T1D advances (stage 2), metabolic abnormalities develop. Finally, with T1D onset (stage 3), there is both a presence of autoantibodies and loss of beta cell function in regard to blood glucose. The staging paradigm was derived from data from the United States’ Diabetes AutoImmunity Study in the Young (DAISY), Finland’s Type 1 Diabetes Prediction and Prevention Study (DIPP), and Germany’s BABYDIAB studies.

Given the similarities of mouse models and human models when it comes to diabetes, mouse models are often used to study disease risk, evaluate pathogenesis, and assess potential treatment options. Researchers have found that specific antigens and T cells affect pancreatic islets differently. Understanding these antigen subsets could be critical in determining effective clinical therapeutics for prevention and treatment.

Thanks to the Network for Pancreatic Organ Donors (nPOD), more than 150 cases have been collected from organ donors with T1D since 2007, as well as more than 150 from non-diabetic donors and dozens of donors with autoantibodies but no clinical diabetes. These tissue donations have provided researchers with islets, cells, and data from multiple facets of the ody that contribute to T1D risk.

Understanding tissue specific T cells, antigens, and autoantibodies may help identify biomarkers of disease activity which could improve targeted therapeutic interventions. Eventually, this may help reduce risk of T1D by creating early intervention strategies.

While not involved with this study, Diabetes Research Connection (DRC) is focused on advancing understanding of T1D and improving prevention, diagnosis, and treatment options as well as progress toward a cure. Early career scientists receive critical funding to pursue novel, peer-reviewed research projects regarding multiple aspects of T1D. Learn more by visiting http://diabetesresearchconnection.org.

Learn More +

Examining the Impact of Intensive Glucose-Lowering Treatment on Hypoglycemia Risk

One of the key indicators in effective diabetes management is HbA1c level. In healthy, non-diabetic adults, the target range is 4% to 5.6%, while in individuals with diabetes, the goal is to maintain an HbA1c level of less than 7%. However, some treatment guidelines aim for achieving levels of 5.6% or less, or between 5.7% and 6.4%.

Striving for these lower HbA1c levels through intensive glucose-lowering therapy may prove more risky than beneficial, though, especially for adults who are considered clinically complex, according to a recent study. These individuals may benefit from less intensive treatment and slightly higher target HbA1c levels to reduce risk of emergency department visits and hospitalizations for severe hypoglycemia.

The study included data from the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2014, and “participants were categorized as clinically complex if 75 years or older or with 2 or more activities of daily living limitations, end-stage renal disease, or 3 or more chronic conditions.” They were considered to be engaged in intensive treatment if their HbA1c level was below 5.6% and they took any glucose-lowering medication, or if their HbA1c level was between 5.7% and 6.4% and they took two or more glucose-lowering medications.

In addition to NHANES data, other population-level studies were included as well when comparing data and outcomes. Overall, overtreatment was estimated to occur in up to 50% of non-clinically complex patients and up to 60% of clinically complex patients.

For the study, 662 nonpregnant adults who had diabetes and maintained HbA1c levels of less than 7.0% were used to represent around 10.7 million adults with diabetes in the United States. Of these participants, 20.1% were age 75 or older, 21.5% were treated intensively, and 32.3% were considered clinically complex. The researchers estimated that over two years, there would be 31,511 hospitalizations and 30,954 emergency department visits for severe hypoglycemia, and that around 4,774 hospitalizations and 4,804 ED visits could be directly attributed to intensive glucose-lowering therapies.

The study found that aggressive treatment of diabetes to achieve lower HbA1c levels could actually have a negative effect on overall health, especially for clinically complex patients who experienced severe hypoglycemic events. It is recommended that many elderly and clinically complex patients avoid intensive treatments and follow relaxed glycemic targets. Recommended HbA1c levels should be evaluated on an individual basis and take into account patient health, comorbidities, and clinical complexity.

There were limitations to this study, and researchers note that “true numbers are likely to much higher” regarding hypoglycemic events and the number that are directly attributable to intensive glucose-lowering therapy.

Type 1 diabetes management is a complex process, and researchers are continually advancing their understanding of the disease and effective treatment options. Diabetes Research Connection (DRC) follows advancements in the field and potential impact on individuals living with T1D.

DRC supports novel, peer-reviewed research studies regarding the diagnosis, treatment, and quality of life for those living with the disease. Learn more about current projects and how to donate to these efforts by visiting http://diabetesresearchconnection.org.

Learn More +

Could Peripheral T Helper Cells Be Linked to Type 1 Diabetes Risk?

Type 1 diabetes (T1D) is a complex disease. Researchers believe that both genetics and autoantibodies play a role in development of the disease. In individuals with T1D, the immune system mistakenly attacks and destroys insulin-producing beta cells in the pancreas. A new study has found that peripheral T helper cells may play a role in initiating this process.

The study showed that children with T1D, as well as those who were autoantibody-positive who developed the disease later on, both had an increase in the amount of peripheral T helper cells circulating in their blood. Researchers believe that much like follicular helper T cells, peripheral T helper cells may also be involved in activating B cells which target against proteins in pancreatic islet cells and contribute to the development of T1D.

The ability to identify children who are at increased risk for the disease due to genetics as well as the elevated presence of peripheral T helper cells may improve options for proactively monitoring and treating T1D. It could also support the development of new immunotherapies for the disease.

More research is necessary to better understand the role of this T-cell subset and how it impacts type 1 diabetes risk and development of the disease as well as how it could improve treatment or prevention options. Though not involved with this study, Diabetes Research Connection (DRC) follows the latest developments and advancements regarding type 1 diabetes understanding, treatment, and prevention.

DRC provides critical funding for early career scientists pursuing novel research studies related to the disease and hopes to one day find a cure. To learn more about current projects or how to help, visit http://diabetesresearchconnection.org.

Learn More +

Does Timing of Exercise Affect Blood Glucose Levels for Individuals with Type 1 Diabetes?

Regular exercise is an important part of maintaining good health, and this goes for individuals with type 1 diabetes (T1D) as well. However, the question has often risen as to whether the time of day that individuals engage in exercise has an impact on their blood sugar management. A recent study compared results when resistance training was completed in the morning during a fasting state versus in the afternoon after blood sugar had been managed throughout the day.

The randomized study involved 12 participants between the ages of 18 and 50 who had been diagnosed with T1D for a least a year, did not take any medications (aside from insulin) that may impact their blood glucose levels, had no limitations on required exercises, and did not perform shift work. They were asked to keep a log of their food intake and insulin dosage because they were blinded to continuous glucose monitoring.

The results showed that engaging in resistance exercise in the morning (7 a.m.) led to a higher risk of hyperglycemic episodes than exercising in the afternoon (5 p.m.). Blood glucose levels tended to be higher during morning exercise and the 60-minute recovery period as well as during the next six hours. However, with afternoon exercise, blood glucose levels declined during exercise and returned almost to baseline during recovery. There was also less glycemic variability during the six hours post exercise.

It is essential that individuals with type 1 diabetes talk to their doctor before starting or changing their exercise routine, and that they carefully monitor their blood glucose before and after physical activity. Studies like these play an important role in helping individuals with T1D to better manage the disease and improve their quality of life.

Diabetes Research Connection (DRC) stays abreast of the latest developments in the field and supports early career scientists in pursuing novel, peer-reviewed research projects focused on prevention, treatment, and an eventual cure for T1D as well as improvement of quality of life. Learn more about current studies and how to support these efforts by visiting http://diabetesresearchconnection.org.

Learn More +

Exploring the Potential Impact of Genetics and Infection on T1D Risk

There is no clear, concise explanation for why some people develop type 1 diabetes (T1D) and others do not, or what puts some people at greater risk for the disease. The origins and triggering factors for T1D are something that scientists have been studying for decades. A recent study looks at the possible relationship between genetic risk variants and viral infections and their impact on T1D development.

In some individuals, enteroviruses may trigger or accelerate disease development. However, in others, these same viruses may stimulate a variety of protective factors. Both genetic and environmental factors come into play, and researchers are exploring how to use these findings to improve treatment and prevention of T1D.

Scientists know that the destruction of insulin-producing beta cells plays a role in disease development. Some individuals present with autoantibodies long before T1D develops, and there are still beta cells present in many people even after living with the disease for many years. Yet they are still unsure about exactly what triggers beta cell destruction.

Studies have shown that around 50 percent of T1D risk is heritable. But just because a person carries this risk, does not necessarily mean they will develop the disease. There are around 60 different loci for single-nucleotide polymorphisms (SNP) that are associated with T1D and may contribute to risk.

Researchers believe that enteroviruses may also play a role. Many links have been found between enterovirus infections and the presence of various autoantibodies.  These infections may trigger beta cell autoimmunity in individuals who already have factors that put them at greater risk of developing T1D. By more effectively identifying individuals who have multiple risk factors, scientists may be able to create targeted antiviral treatments or preventive virus vaccines.

There is still a great deal of research to be done regarding the development of and triggers for T1D. Genetics, environment, and infection may all play a role, but their impact differs from person to person. There is also limited insight into factors such as ethnicity and gender, especially when looking at enteroviral etiology.

Though not involved with this study, the Diabetes Research Connection (DRC) contributes to current bodies of research through providing critical funding for early career scientists pursuing projects related to the diagnosis, prevention, treatment, and eventual cure for T1D. Scientists are learning more about the disease every day. Support these efforts by visiting http://diabetesresearchconnection.org.

Learn More +

Asthma Medication May Help Treat Diabetic Retinopathy

A common complication associated with diabetes (T1D) is diabetic retinopathy. Poor blood sugar control can increase risk of this disease because it impacts the blood flow to the eye by blocking and damaging tiny blood vessels. It can eventually lead to blindness. Symptoms can be very mild and barely noticeable at first, so this is often a condition that is treated in later stages when the effects become more severe.

However, a recent study found that the administration of an FDA-approved asthma medication – montelukast, also known as Singulair – may help reduce damage to blood vessels and nerves in and around the eye. This indication has only been tested in mouse models so far, but because it is already an FDA-approved medication for use in children and adolescents, this may decrease the time it takes to shift into human clinical trials.

Researchers found that the medication suppresses inflammation enough to alter the signaling of inflammatory molecules and prevent pathology, but not enough to compromise the body’s innate immunity. If found effective in human trials, it could be used as a prevention method as well as to treat diabetic retinopathy in its early stages. This could be beneficial to children who are newly diagnosed with type 1 diabetes and even those who have been managing the disease for several years and are at risk for eye disease.

Though not involved with this study, the Diabetes Research Connection (DRC) is interested to see how it progresses and what findings show when used in human subjects. It is encouraging to see a potential new option for reducing risk of diabetic retinopathy and improving quality of life for individuals living with type 1 diabetes.

DRC supports early career scientists in pursuing novel, peer-reviewed research studies aimed at prevention, treatment, and an eventual cure for type 1 diabetes. To learn more about current projects and how to help, visit http://diabetesresearchconnection.org.

Learn More +

Structured Mealtime Routines May Help Manage HbA1c Levels in Young Children with Type 1 Diabetes

Managing type 1 diabetes (T1D) can be challenging for anyone, but it can be especially difficult for parents of young children with the disease. They must carefully monitor their child’s diet and activity while regularly checking blood glucose levels. A recent study has found that those children who receive preprandial insulin and eat on a regular schedule tend to have improved HbA1c levels.

Researchers analyzed data from 22 Australian children age seven or younger. Their parents tracked the exact amounts and types of food and beverages offered and consumed by their children over a three-day period. They also answered 16 questions regarding mealtime routines and their child’s eating patterns, such as whether they grazed throughout the day or had set snack times and meal times. In addition, it asked about use of preprandial insulin.

The study found that 95% of children used preprandial insulin, and all children ate at least three meals per day. For 81% of children, their parent determined when they were offered food, but the other 19% followed child-led eating patterns. While there was no direct correlation between carbohydrate, protein, or fat intake on HbA1c, researchers did note that HbA1c levels were lower in those children who ate at regular mealtimes as opposed to grazing throughout the day.

Another interesting note was that the children with T1D ate similar diets as those children without the disease. Furthermore, none of the children in the study met the daily recommended vegetable intake, and only 28% ate recommended amounts of lean meats and protein. Additional research is necessary to evaluate the impact of diet quality on diabetes management.

It is these types of studies that provide further insight into improving management of type 1 diabetes. The Diabetes Research Connection (DRC) provides early career scientists with up to $75K in funding to support peer-reviewed, novel research studies focused on prevention, treatment, and management of type 1 diabetes as well as working toward a cure. To learn more and donate to current projects, visit http://diabetesresearchconnection.org.

Learn More +

Nasal Glucagon Approved to Treat Severe Hypoglycemia

If you or someone you love is living with type 1 diabetes, you know that, in addition to blood sugar becoming too high, having it drop too low is a serious concern as well. When blood sugar falls below 70mg/dL, individuals often start feeling the effects such as shakiness, sweating, chills, lightheadedness, weakness, blurry vision, or tiredness.

If blood sugar continues to drop, it can lead to severe hypoglycemia where the person may be unable to treat their low blood sugar themselves due to confusion, seizures, or loss of consciousness. When this occurs, the individual with T1D often relies on medical personnel or a trained bystander to administer glucagon. Traditionally, glucagon is injected into the arm, thigh, or buttock. However, the medication must first be reconstituted, which involves injecting the contents of the syringe into a vial, mixing it together, then drawing it back into the syringe to inject into the person. In an emergency situation, this can be a lot of steps to follow and there is plenty of room for error.

In an effort to simplify the process, Eli Lilly and Company has manufactured the first ever FDA-approved nasal glucagon, Baqsimi. The device is pre-loaded with 3 mg of glucagon and ready to use for patients age 4 and older. The medication stimulates the liver to release glucose and was found to effectively reverse insulin-induced hypoglycemia based on three studies encompassing more than 200 participants. There were no major safety concerns, and the potential adverse reactions were similar to those of injectable glucagon with the addition of watery eyes and nasal congestion. However, nasal glucagon is not recommended for individuals with pheochromocytoma or insulinoma.

Nasal glucagon provides yet another option for individuals with T1D to quickly – and more easily – treat episodes of severe hypoglycemia. It is simple to use because there is no reconstitution, multi-step processes, or injections necessary. The drug is expected to hit the U.S. market around the beginning of September 2019.

We are excited to see this new product come to market and is interested to see how it impacts diabetes care and management for individuals who experience severe hypoglycemia.

Learn More +

Researchers Identify a New Type of Diabetes

Many people are familiar with the two most common types of diabetes – type 1 diabetes and type 2 diabetes – but other forms exist such as gestational diabetes. According to a recent study, researchers have discovered another type as well: checkpoint inhibitor-associated autoimmune diabetes or CIADM.

Immune checkpoint inhibitors are often used in the treatment of advanced cancers to block programmed cell death-1 (PD-1) receptors. However, one of the potential adverse effects of anti-PD-1 therapy is CIADM. Patients who develop this condition experience a sudden loss of insulin as well as variable glycemic control and require insulin to manage the condition.

The retrospective cohort study included 538 patients who were treated for metastatic melanoma between March 2015 and March 2018. Patients had either received only anti-PD-1 therapy, a combination of anti-PD-1 and ipilimumab, or a combination of anti-PD-1 and either ipilimumab or a placebo. Of these 538 patients, six who received only anti-PD-1 and four who received anti-PD-1 and ipilimumab developed CIADM. Demographic information showed that 90 percent were male, the median age was 62, and only one patient had a prior history of diabetes. In addition, all 10 were negative for islet antigen 2 antibodies, insulin antibody, and zinc transporter 8 antibody.

These findings open doors for larger studies and more in-depth research into this condition, which is not the same as type 1 diabetes despite requiring insulin to manage blood glucose levels. The Diabetes Research Connection (DRC) is interested to see where this study will lead and what it may mean for the future of diabetes, treatment, and understanding of the disease.

The DRC provides essential funding for early career scientists focused on studying issues related to type 1 diabetes. These studies not only aim to advance understanding and improve diagnosis, treatment, and quality of life, but also to one day find a cure.

Learn More +

Could Hybrid Immune Cell Be Linked to Type 1 Diabetes?

Scientists understand a lot about the foundational cells that make up the body, but even still, they are always learning and discovering more. For instance, the body’s immune system is made of up B cells and T cells. These cells identify foreign invaders in the body – such as germs – and then attack and destroy them or create antibodies. In individuals with type 1 diabetes, these cells mistakenly destroy insulin-producing beta cells.

However, a recent study shows that scientists have discovered a hybrid cell that is a combination of both B cells and T cells. Not only does the surface of the cell have B cell and T cell receptors, it also expresses genes from both types of cells. In addition, these cells contain a unique genome sequence in B cell receptors that was only found in the cells of individuals with type 1 diabetes. Though some healthy individuals had this hybrid cell, they did not present with this specific B cell receptor sequence.

Upon further investigation, they found that this dual expresser cell binds very tightly to the HLA-DQ8 molecule, which is believed to play a major role in triggering the body’s attack on insulin-producing beta cells. Since this occurs in the early stages of type 1 diabetes development, researchers are interested in the potential for this discovery to one day support early diagnosis or prevention of the disease.

However, there are still many unanswered questions that exist. Scientists do not yet understand exactly how, why, when, or where the hybrid cells develop. While T cells originate in the thymus, B cells come from bone marrow and lymph nodes. Scientists are unclear where the overlap may occur that would combine these two distinct cells. They are also unsure why these dual expresser cells would go on to target insulin production.

This is the first time that this type of cell has been identified, so there is still a great deal of research that needs to be done. No one is exactly sure what this could mean for future understanding of type 1 diabetes and treatment options. That will come as more studies are done and more in-depth research is completed.

The Diabetes Research Connection (DRC) is excited to see where this discovery leads and the type of studies it generates. Though not involved with this study, the DRC provides critical funding to early career scientists for novel research projects related to type 1 diabetes. This is an integral part of advancing understanding and treatment of the disease.

Learn More +

Exploring the Link Between Disturbed Eating and Type 1 Diabetes

 

Managing type 1 diabetes requires careful monitoring of food intake, activity, blood sugar, and insulin administration. Depending on what a person eats and when, it impacts their blood glucose levels. A recent study found that around one-third of individuals between the ages of 16 and 28 experience issues with disturbed eating behavior (DEB). Furthermore, many report restricting or omitting insulin.

The study evaluated the responses of 300 participants to the Diabetes Eating Problem Survey-Revised (DEPS-R) as well as to questions regarding diabetes distress, depressive symptoms, and self-management of the disease. They were divided into four groups based on their DEPS-R scores for baseline and then one year later. The groups were low DEB (65.7%), increasing DEB (8%), decreasing DEB (7.3%), and persistent DEB (19%).

While mean DEPS-R scores were stable from baseline to one year later, the scores were higher in females than in males – 16.53 and 15.57 in females versus 8.71 and 8.96 in males. All groups reported varying levels of insulin restriction and omission, but it did not differ significantly between males and females.

Individuals who fell into the persistent DEB group showed the highest levels of diabetes distress and depressive symptoms while those in the low DEB group showed the lowest levels.  The low DEB group also had the lowest HbA1c levels, while the persistent DEB group had the second highest. The study also found that “self-management decreased when DEB increased, and vice versa.” This could in turn lead to poorer glycemic control and increased health care costs.

The researchers found overall that DEB can occur at any age and any stage of the disease, but that evaluating adolescents and young adults for DEB and eating disorders may be beneficial in supporting better diabetes management and glycemic control.

The Diabetes Research Connection, though not involved with this study, supports early career scientists in conducting research aimed improving prevention and finding a cure for type 1 diabetes as well as minimizing complications and improving quality of life for individuals living with the disease. Through donations from individuals, corporations, and foundations, scientists can secure the critical funding they need to move forward with their research.

Learn More +

Could Type 1 Diabetes Slow Brain Development in Children?

Since type 1 diabetes occurs when the pancreas produces little to no insulin, it is often diagnosed in childhood when this deficiency become more apparent. The body is unable to naturally manage blood sugar levels since the immune system mistakenly attacks and destroys insulin-producing beta cells. This means that parents must take over this responsibility until children are able to effectively manage their condition on their own.

Many parents are hesitant to overtreat and end up allowing blood sugar levels to remain slightly elevated (hyperglycemia) rather than risk having them drop too low (hypoglycemia). Neither condition is desirable as they can both lead to health complications. The goal is to create a management plan that enables blood sugar levels to remain as normal as possible.

A recent study found that hyperglycemia in children with type 1 diabetes may actually slow brain development and impact brain structure, cognitive function, and sensory processing. The study followed 138 children with type 1 diabetes between the ages of four and seven. Participants had been living with diabetes for an average of 2.4 years. These children were compared to 67 age-matched controls without type 1 diabetes.

After approximately 4.5 years, researchers found that those children with type 1 diabetes had decrements in both full-scale and verbal IQ, which was associated with hyperglycemia and an average HbA1c of 8%. The target goal for children is an HbA1c of less than 7.5%.

However, a larger study found that although full-scale, verbal IQ, and vocabulary were lower in those with T1D, there was no significant difference in processing speed, memory, or learning scores compared to the control group. The brains of children with T1D seemed to compensate for areas where there were challenges, and executive function was similar between groups.

Nelly Mauras, MD, chief of the Division of Endocrinology, Diabetes, and Metabolism at Nemours Children’s Health System and part of the Diabetes Research in Children Network (DirecNet) noted, “We are not suggesting that these youngsters aren’t performing academically. So far, these differences have not translated into functional outcomes in performance, at least not yet.”

Researchers continue to follow these groups in order to gather more information and determine the impact over a longer duration of time. They are interested in learning more about whether advanced technology can make it easier to maintain near normal glucose levels and whether HbA1c guidelines should be lower than 7.5% for children with type 1 diabetes to minimize hyperglycemia.

The Diabetes Research Connection (DRC), though not involved with this study, will continue to follow study progress to see what future comparisons hold and how this may impact treatment options and guidelines for children with type 1 diabetes. Current results may stimulate new research opportunities and increase understanding of the greater impact of T1D on health and development. The DRC provides critical funding for early career scientists to pursue novel research projects related to type 1 diabetes.

Learn More +

Later Onset Type 1 Diabetes Often Misdiagnosed as Type 2

Type 1 diabetes used to be commonly known as juvenile diabetes because it was often diagnosed in childhood. In individuals with this disease, the body mistakenly attacks and destroys insulin-producing beta cells, and eventually the body is no longer able to generate enough insulin to support normal blood sugar levels. Therefore, individuals must monitor their own blood-glucose and inject themselves with insulin.

However, research has shown that around 42% of people with type 1 diabetes were diagnosed after age 30. A recent study found that some people are mistakenly diagnosed with type 2 diabetes instead due to the late onset of the disease as well as clinical and genetic characteristics. This can make it difficult to properly differentiate between the two conditions.

The study examined data from 583 participants diagnosed with diabetes after age 30 who are part of the Exeter Diabetes Alliance for Research in England (DARE). Their data was compared to 220 DARE participants with the same study criteria but who were diagnosed with type 1 diabetes before age 30.

The researchers wanted to know how many of those diagnosed after age 30 had severe endogenous insulin deficiency (meaning their body naturally produced little to no insulin on its own), whether diagnosed with type 1 or type 2 diabetes. Severe insulin deficiency is a classic sign of type 1 diabetes but C-peptide and other tests are not always conducted to check for this condition in adults age 30 or older. However, the study found that 21 percent of participants who were treated with insulin had this condition, and 38% of participants not treated with insulin at diagnosis had it.

Individuals who required rapid insulin within one year of diagnosis or who were treated with insulin within three years of diagnosis had a higher likelihood of severe endogenous insulin deficiency; 85% and 47% respectively. This means that they likely had type 1 diabetes rather than type 2, regardless of what their initial diagnosis was. Participants diagnosed after age 30 shared very similar clinical and biological characteristics with the younger cohort.

It is critical that physicians conduct necessary testing to differentiate type 1 from type 2 diabetes regardless of age of onset. There are often different protocols for treating each of these conditions, and individuals with type 1 diagnoses have greater access to necessary resources such as continuous glucose monitoring (CGM) devices, insulin-pump therapy, and targeted diabetes education.

With more awareness of the frequency of type 1 diabetes onset after age 30 and associated characteristics, hopefully medical providers will be better able to assess and accurately diagnose this condition more quickly to provide essential treatment.

The Diabetes Research Connection (DRC) strives to support early career scientists in pursuing novel research studies that focus on the prevention, diagnosis, and treatment of type 1 diabetes as well as improving quality of life for individuals living with this disease. Research is critical to one day finding a cure.

Learn More +

Is it Possible to Delay the Onset of Type 1 Diabetes?

Living with type 1 diabetes (T1D) is challenging. It requires constant monitoring and adjustment of one’s blood sugar. Since T1D is commonly diagnosed in childhood, it can put additional strain on parents who must carefully manage their child’s condition. However, a recent study reveals that scientists may have found a way to delay the onset of type 1 diabetes by two years or more.

An antibody drug developed by Jeffrey Bluestone, an immunologist at the University of California, San Francisco, helps to shut down activated T cells thereby reducing the body’s immune system attacks on insulin-producing beta cells. It is the destruction of these cells that triggers T1D. Bluestone partnered with Kevan Herold, an endocrinologist at Yale University, to begin researching the potential of this drug in delaying the development of diabetes.

They first experimented with the drug on mouse models who were at high risk of developing type 1 diabetes, and it was effective in staving off the disease in many of the mice. In 2000, they shifted their work to human trials. The key was figuring out exactly when to administer the drug. If they gave it too early, there was not enough T cell activation so there was not much to protect against. Too late and there was too much T cell activity to manage. They had to find the precise time when diabetes was on the verge of developing or had been newly diagnosed.

In a trial involving 12 patients, after one year, nine of the participants had maintained or increased their body’s natural insulin production. This meant that their body was better able to manage glucose levels on its own and required less insulin to be injected.

After some setbacks and skepticism, Bluestone, Herold, and their team arranged for another trial. This time, they included participants who were at a high risk of developing type 1 diabetes within five years. They recruited 76 participants, 44 of whom received the drug (now known as teplizumab), and 32 of whom received a placebo. The drug was administered via IV infusion over 14 consecutive days. The results showed that while individuals who received the placebo were diagnosed with diabetes after an average of two years, those who received teplizumab were diagnosed after an average of four years. In addition, 72% of placebo recipients developed diabetes after five years compared to only 43% who received the experimental drug.

There is still a great deal of research and clinical testing that must be done, but this is a step forward in delaying onset of type 1 diabetes and eventually perhaps preventing development of the disease all together in high-risk individuals. Even delaying the disease by two years as the current study showed is monumental in improving quality of life. It is two fewer years of daily disease management and potential complications.

This discovery could lead to a greater understanding of diabetes prevention or delaying disease progression. It could stimulate new research and studies from scientists as they seek to advance results. The Diabetes Research Connection, though not involved with this study, provides critical funding that allows early career scientists to move forward with novel research projects. There’s no telling exactly what impact their findings could have on the future of type 1 diabetes or when the next major breakthrough will occur.

Learn More +

Scientists Uncover New Insight into Autoimmune Response

Autoimmune diseases are challenging to treat because the immune system plays a critical role in keeping the body healthy. However, when this system is destroying its own cells even without the presence of an infection, it can be problematic and potentially life-threatening. Millions of people suffer from autoimmune diseases such as type 1 diabetes (T1D), lupus, and scleroderma, and treatment options—as well as their effectiveness—are limited.

However, researchers at the University of Leeds and the University of Pennsylvania have made a new discovery that could change treatment in the future. They found two proteins—BRISC and SHMT2—that together are responsible for controlling the body’s response to infection or what it deems foreign invaders.

The team is aiming to figure out a way to target these proteins and keep the immune system from attacking and destroying the body’s own cells. This could eventually generate a new class of drugs for treating autoimmune disorders, though this type of treatment is still a long way off as a wealth of research and testing still needs to be conducted regarding this process.

It is encouraging to see new developments occurring and progress being made toward better understanding autoimmune diseases such as type 1 diabetes. With advanced research, scientists can formulate improved treatment options and perhaps one day a cure.

The Diabetes Research Connection, though not involved with this study, is part of the effort toward improving prevention, treatment, and quality of life for individuals living with T1D. Through donations from individuals, corporations, and foundations, early career scientists are able to receive critical funding to support novel, peer-reviewed research projects.

Learn More +

Exploring Protective Factors Against Diabetic Kidney Disease

One of the complications that can stem from living with diabetes is the risk of developing diabetic kidney disease. The kidneys play a critical role in filtering waste and excess water out of the blood and sending it out of the body. Prolonged high blood sugar and/or blood pressure can damage the kidneys and prevent them from functioning effectively. Eventually, individuals may require dialysis or a kidney transplant if damage is too extensive.

However, a recent study from the Joslin Diabetes Center found that some people have biological protective factors that may be effective in reducing risk of diabetic kidney disease. Their bodies have certain enzymes that affect glucose metabolism and protect the kidneys. Researchers studied cohorts of individuals who have been living with type 1 or type 2 diabetes for more than 50 years with minimal or no complications. They are referred to as Joslin Medalists.

One key finding was that the Medalists had increased PKM2, an enzyme in the blood that protects against diabetic kidney disease. There were also other metabolites and proteins that appeared at higher levels as well in their plasma. An interesting discovery was that the presence of an amyloid precursor protein (APP)—which is known to signal increased risk of Alzheimer’s disease—may actually work as a protective factor against diabetic kidney disease.

Scientists need to conduct additional research to further understand these potential protective factors and how they can be used to improve diagnosis and treatment of diabetic kidney disease or diabetes in general. Diabetic kidney disease can be a potentially fatal complication, so the more researchers understand about how it develops and the biological protective factors that can decrease risk, the better they can support individuals living with diabetes and their health.

Though not involved with this study, the Diabetes Research Connection (DRC) stays abreast of the latest research regarding type 1 diabetes and ways to improve diagnosis, treatment, and quality of life for individuals with the disease. Through donations from individuals, corporations, and foundations, the DRC provides critical funding for early career scientists to pursue novel research studies and further understanding of type 1 diabetes.

 

Learn More +

Connect For A Cure: May 2019 Newsletter

We’re committed to keeping our community updated. Click on the link below to read more about what we’ve been up to and the impact we are making together. It takes a community to connect for a cure!

May 2019 Newsletter

Learn More +

Beta Cell Proliferation May Help Protect Against Type 1 Diabetes

In individuals with type 1 diabetes (T1D), the body’s immune system mistakenly attacks and destroys insulin-producing beta cells. For years, researchers have been looking at options for suppressing this immune system attack, as well as processes to replace beta cells or stimulate the body to produce more. A recent study by researchers at the Joslin Diabetes Center may have found a way to do both and increase protection against T1D.

Scientists found that by speeding up cell proliferation and flooding mouse models with beta cells, it stopped the immune system from destroying these cells. According to Dr. Rohit Kulkarni, HMS Professor of Medicine and Co-Section Head of Islet and Regenerative Biology at the Center, “We believe there are some alterations in the new beta cells where a number of cells being presented as autoantigens are reduced or diluted, and therefore, because of the slow presentation of the antigens, the number of autoreactive T cells are less pathogenic.” In addition, when these cells were transplanted into other mice, they appeared to have a greater resistance to stress, which could also help them to survive longer in adverse conditions.

Gaining a greater understanding of the role cell proliferation can play and determining when the ideal time to activate this process is could have a positive impact on improving protective factors against T1D. This process has not yet been tested in humans, and there would likely still be a need for some level of immune system suppression to manage lingering autoimmunity.

The Diabetes Research Connection (DRC) stays abreast of the latest developments regarding T1D and is interested to see how these findings impact future studies and treatment options for the disease. It is these types of projects that stimulate innovative studies from other researchers. The DRC provides critical funding to support early career scientists in pursuing novel, peer-reviewed research.

 

Learn More +

Researchers Improve Cell Conversion to Support Diabetes Treatment

One of the methods of treating type 1 diabetes that researchers have been exploring is using patients’ own cells. They found that by converting stem cells into insulin-producing beta cells and then transplanting them into patients, it could stimulate the body to generate its own insulin. However, one of the challenges they faced is that beta cells only made up around 30 percent of the cells in the mixture following conversion.

Researchers in Douglas Melton’s lab at the Harvard Stem Cell Institute may have found a way to increase this percentage. A recent study found that by using single-cell sequencing, they were able to identify what the other 80 percent of cells in the mixture were. Then, by applying various molecular biology approaches, they could sort the cells based on expression patterns. Since beta cells contain a specific protein that other cells do not, they had another way to filter these cells out of the mix and increase the overall concentration that would be implanted into patients with type 1 diabetes.

Scientists at Semma Therapeutics also found a way to collect insulin-producing beta cells by separating all of the cells and then allowing them to cluster back together through their natural attraction to the same type of cell. This also increased the concentration of beta cells, and they could create a mixture that was around 80 percent beta cells versus the previous 30 percent.

The researchers are currently conducting more tests to determine what balance of beta cells versus other cells is most effective for regulating beta cell function and stimulating the production of insulin. However, now they have a greater understanding of the cell makeup during the conversion process and how to separate specific cell types.

This is another step toward improving treatment options for type 1 diabetes and potentially finding a cure. Advanced research is necessary for creating change. The Diabetes Research Connection provides funding for novel, peer-reviewed research studies focused on the prevention, treatment, and cure of type 1 diabetes, as well as improving quality of life for individuals living with the disease. Early career scientists can receive up to $50K to support their research.

Learn More +

Enteroviruses May Be Linked to Higher Type 1 Diabetes Risk

As with many diseases, type 1 diabetes is triggered by both genetic and environmental factors. There is not a single cause that can be pinpointed when it comes to why insulin-producing beta cells are destroyed by the body. However, researchers are constantly discovering different factors that may contribute to this process. A recent study found that children diagnosed with type 1 diabetes (T1D) may have higher levels of enterovirus A (EV-A) in their gut than children without T1D.

In comparing faeces and plasma viromes and data for a birth cohort of 93 Australian children, results showed that 62 percent of children tested positive for at least one vertebrate-infecting virus. The researchers tested samples for all known vertebrate-infecting viruses, and five EV-A types came back as significantly abundant in children at the onset of T1D diagnosis than in control cases.

Viruses often survive longer in the gut than in the blood, so the prolonged presence of enteroviruses in the gut may increase the risk of these infections spreading to the pancreas. In turn, this may contribute to the body’s immune system attacking and destroying insulin-producing beta cells and triggering T1D.

The study opens doors for additional research regarding EV-A and viral load in general as it relates to T1D. These findings could potentially lead to the development of targeted vaccines for these identified viruses to help protect against the development of type 1 diabetes. It is yet another step toward understanding this complex disease and working toward a cure.

The Diabetes Research Connection (DRC), though not involved in this study, stays abreast of the latest research and discoveries in the field to support future advancements. The DRC provides critical funding to early career scientists to support novel, peer-reviewed studies related to the diagnosis, treatment, and prevention of type 1 diabetes.

Learn More +

HbA1c Levels May Influence Preterm Birth Risk

Maintaining healthy HbA1c levels is essential for individuals with type 1 diabetes (T1D), but it may be especially critical for women seeking to have children. A recent study out of the Karolinska Institutet in Stockholm found that higher HbA1c levels during the periconceptional period may increase risk of preterm birth.

The study compared incidences of preterm birth for 2,474 babies born to women with type 1 diabetes, and 1,165,216 babies born to women without diabetes. They were all single births; no multiples. The researchers found that, overall, preterm birth occurred in 22.3 percent of babies born to women with T1D verses 4.7 percent of babies to women without diabetes. Broken down even further, the results revealed that the higher the woman’s periconceptual HbA1c level, the higher the risk for preterm birth. When the HbA1c level was below 6.5 percent, there was a 13.2 percent incidence of preterm birth compared to a 37.5 percent incidence when the HbA1c level was at or above 9.1 percent.

However, it is important to note that researchers found, “Preterm birth among women with T1D was strongly linked to periconceptual HbA1c levels, although women whose HbA1c levels were consistent with recommended target values were also at increased risk for preterm birth as well as other adverse pregnancy outcomes.”

This study helps to raise awareness about the risk of preterm birth for women with T1D and the importance of monitoring and managing blood sugar levels. T1D can impact many aspects of an individual’s life, and that includes pregnancy. Gaining a better understanding of these effects can support improved treatment and overall healthcare.

The Diabetes Research Connection (DRC) stays abreast of the latest industry findings and provides critical funding for early career scientists pursuing T1D-related research. Donations from individuals, corporations, and foundations make it possible for these projects to move forward and for innovative research to continue.

Learn More +

Gestational Diabetes May Increase Risk of Type 1 Diabetes in Children

Over the years, researchers have identified a variety of potential risk factors and triggers for the development of type 1 diabetes. While they know that diabetes risk runs in families – having a parent with T1D puts children at increased risk – a recent study found that gestational diabetes may also be a risk factor. Women who develop gestational diabetes do not usually have a history of the disease, and it often resolves once they have given birth.

However, the development of this condition may put their offspring at greater risk for T1D.  The study found that when mothers had gestational diabetes, children were twice as likely to develop diabetes by age 22 than those children born to mothers without gestational diabetes. A limitation of the study was that it was unknown whether children were diagnosed with type 1 or type 2 diabetes, though type 1 is more common in children.

The study involved 73,180 groups of mothers, fathers, and offspring who live in Quebec, Canada. If there was a previous history of diabetes, heart failure, or cardiovascular disease in either parent, the group was excluded from the study. Factors such as the mother’s gestational age and other maternal demographics were also adjusted for when analyzing risk and results.

Understanding the potential risk may help parents to be more alert to potential signs of diabetes in their children such as abnormal thirst, frequent urination, unusual weight loss, or fatigue if the mother experienced gestational diabetes. This can allow children to be tested and diagnosed sooner so that they can better manage their health.

Additional research is needed to address limitations of this study and also to further explore the severity of the disease in children born to a mother with gestational diabetes versus those who were not. Researchers are unclear at this point whether there is any significant difference.

It is these types of studies that stimulate new research and questions in regard to type 1 diabetes. The Diabetes Research Connection (DRC) strives to provide critical funding for early career scientists so that they can carry out research related to the diagnosis, treatment, and prevention of T1D, as well as improving quality of life for those living with the disease. To learn more about current projects and support these endeavors, visit http://diabetesresearchconnection.org.

 

Learn More +

Researchers Identify Key Protein Fragment that May Trigger Type 1 Diabetes

While the basics of type 1 diabetes (T1D) have been understood for years—the body’s immune system mistakenly destroys insulin-producing beta cells—the reasoning behind it has remained a mystery. Researchers have yet to identify exactly why this process occurs and what causes it. They may be a step closer as a recent study shows that an altered protein fragment may be the culprit.

The human body is filled with T cells that are constantly on the lookout for foreign bodies and infected cells. When their receptors sense these problems, they activate the immune system to destroy the affected cells. Normally, any T cells with receptors for proteins that occur naturally within the body are destroyed before they make it out of the thymus. This prevents them from attacking proteins that should be in the body, which in this case are insulin proteins. But scientists believe that some may escape before this process occurs, and therefore they mistakenly trigger an attack against insulin-producing cells which in turn leads to type 1 diabetes.

Researchers took a closer look at the structures that bind T cells to insulin fragments and found a specific fragment that may activate T cells to destroy insulin-producing cells. It is known as the B:14-22 fragment. They created a molecule where all of the pathogenic T cells and protein fragments fit very tightly together, but in order to improve their connection, they altered the insulin fragments. In doing so, they found that this activated the pathogenic T cells which led to an autoimmune attack on the cells.

They found that the body naturally creates altered fragments through a process called transpeptidation. When proteins are broken apart in the cell, they are recycled and may fuse together with other protein fragments. This generates a new configuration of proteins. Researchers believe that some of these new fragments could have just the right structure to activate T cells leading to the development of type 1 diabetes.

These findings may help scientists to create more effective methods for preventing and treating type 1 diabetes. Having a better understanding of what is happening on a cellular and molecular level allows for more targeted focus on coming up with a cure.

The Diabetes Research Connection (DRC) is excited to see where this study may lead and what it could mean for future diabetes treatment. It may also stimulate new studies from other researchers building on these findings. The DRC provides critical funding to early career scientists in order to support novel research on type 1 diabetes. Empowering more research could open new doors.

 

Learn More +

The Untold Story of a Pediatric Endocrinologist – Dr. Alberto Hayek

Most people know me as a pediatric endocrinologist in San Diego, California. What most people do not know about me is that I was drafted into the US Army in my mid-20’s, soon after immigrating from Colombia to the US for postgraduate medical training. I was an ideal candidate to be drafted because I was young, single and a newly minted MD. I was sent to Vietnam to serve as a flight surgeon for an Army helicopter battalion.

Being the only MD for an Army flight battalion stationed in the heart of Mekong Delta put me in very close contact with all the pilots. My medical crew took care of those wounded during battle, mainly stabilizing vital signs before evacuating them to facilities for more definitive treatment. Part of my responsibilities included listening to the pilots’ private concerns because in their eyes, short of a minister, I had the capacity to understand and provide support. The rest of my time was spent caring for the many Vietnamese civilians hurt during combat operations.

I will never forget the soldiers suffering during the war or the wounded Vietnamese civilians of all ages. During the 40-plus years of medical practice after my war experiences, in a life dedicated to caring for children and their families, I have often relived an episode that touched me deeply. Civilians do not encounter the atrocities of war, but the pain of a family with an ill child confronting a difficult prognosis is akin to a missile sent from an unknown source.

In my clinical practice, I would ask each child I cared for, “If you could have one thing in the world, what would it be?” Their response was always the same, “I want a cure!” After years of receiving the same answer, I knew I had to do something different, so I went into research to try to find a cure. Witnessing the suffering of so many has profoundly impacted me which is why I cannot sit back and idly wait for a cure for Type 1 Diabetes (T1D).

As a T1D researcher, I was the first to show that it was possible to culture human fetal and adult islets. While we were able to replicate beta cells in vitro, we realized that they began to change into cells that could not produce insulin. However, when we re-aggregated them, they were able to make insulin again. By this time, human stem cells were developed and promptly directed to cells able to produce insulin. Important was to re-aggregate the cells, which is what my lab found. This discovery led to its use in protocols to facilitate the potential transplantation of insulin-producing cells from stem cells into T1D patients.

I founded the Diabetes Research Connection with David Winkler because we both believe there is more to do and are committed to funding early-career scientists with novel approaches to prevent, cure and better care for those with T1D.

Learn More +

Exploring the Impact of Type 1 Diabetes on Standardized Testing

Though type 1 diabetes (T1D) can be diagnosed at any age, it is typically diagnosed in childhood. That means that thousands of children grow up and go through school while managing this disease. A recent study looked at the potential effects of T1D on standardized test scores of Danish children.

Researchers evaluated data on standardized reading and math tests from 631,620 Danish public school children in grades 2, 3, 4, 6, and 8. Of the more than 630,000 participants, 2,031 had T1D. After analyzing more than one million reading test scores and nearly 525,000 math test scores, they found that there was no significant difference in results between those children with diabetes versus those without. Adjustments were made for grade, test topics, and year, and comparisons were made both with and without adjusting for socioeconomic status. In both cases, there were no statistically significant differences in results.

It is encouraging to see that the presence of T1D has not had a major impact on standardized testing performance, at least for the Danish schoolchildren who participated in the study. T1D affects many aspects of a person’s life, and it can be difficult to effectively manage, especially for children.

The Diabetes Research Connection (DRC) stays abreast of diverse studies that look not only at how T1D develops and is treated but also its impact on quality of life. DRC provides funding that enables early-career scientists to pursue novel research studies on all facets of the disease in an effort to advance understanding and improve outcomes.

 

Learn More +

Could Enteroviruses Play a Role in Type 1 Diabetes?

There is no single cause of type 1 diabetes (T1D). Though scientists know that T1D involves the body destroying insulin-producing islet cells in the pancreas, there is not one specific trigger. In fact, researchers believe that genetics, environment, and immunologic capability all play a role and put individuals at different risks for developing the disease.

A recent study from investigators at Columbia University’s Mailman School of Public Health has found that the presence of certain non-polio enteroviruses may impact islet autoimmunity and lead to type 1 diabetes. They looked at the abundance of these viruses in blood and stool samples from 93 Australian children. Forty-three of the children had type 1 diabetes precursor islet autoimmunity while 48 children were matched as controls.

Using an incredibly powerful viral sequencing tool, they found 129 viruses—including five enteroviruses—that were present in higher levels in children with islet autoimmunity than those in the control group. Individuals with strong immune systems tend to eliminate enteroviruses rather quickly, usually within three to four weeks. With a slower immune response, it could take up to three months.

Risk increases when these viruses spread to children’s pancreases. Scientists are exploring how they affect pancreatic islet cells and interfere with function potentially causing beta-cell destruction and type 1 diabetes. While more research is necessary to further understand the impact enteroviruses may have, these new findings help scientists to refine their studies of the disease and its development.

While not involved with this study, the Diabetes Research Connection supports novel, peer-reviewed research studies focused on the development and treatment of type 1 diabetes as well as improving quality of life for individuals living with the disease. Up to $75,000 in funding is available for early career scientists through support from individuals, corporations, and foundations.

 

Learn More +

Oral Drug Could Help Manage A1C in Patients with Type 1 Diabetes

A major challenge for individuals living with type 1 diabetes (T1D) is reaching target A1C levels. Despite careful management of the disease and regularly checking blood sugar, many people’s A1C is still higher than recommended. While individuals with type 2 diabetes have a variety of medications they can take to help manage blood sugar, those with T1D must rely on insulin.

However, that may be changing. While insulin would still be necessary, a new oral drug may help individuals with T1D to achieve target A1C levels. The drug – sotagliflozin—prevents the kidneys from reabsorbing sugar and delays the absorption of glucose in the gastrointestinal tract. This means that there is less sugar in the blood because more of it is lost through urine output. According to researchers, there was a “two-fold increase in the number of patients who reached the target A1C level while on the drug.”

In addition to achieving improved A1C levels, many participants also experienced weight loss and a decrease in the amount of insulin needed to manage their T1D. This is a major breakthrough for patients with T1D as it would be the first ever oral antidiabetic drug for the disease in the United States. Three clinical trials encompassing 3,000 participants have been conducted so far to test safety and efficacy, and the drug is slated for a vote by the FDA for approval.

The Diabetes Research Connection (DRC) is excited to continue following this study and the potential approval of sotagliflozin as another option in the treatment of type 1 diabetes. It would give patients another resource for helping to manage this disease and its impact on their health. The DRC is committed to supporting research that improves the diagnosis, treatment, and prevention of type 1 diabetes and enhances quality of life for those living with the disease. Learn more about current projects and how to contribute to critical funding by visiting http://diabetesresearchconnection.org.

 

Learn More +
Gladitood

Conversion of Alpha Cells to Beta Cells in Pancreas May Help Treat Type 1 Diabetes

In individuals with type 1 diabetes (T1D), the immune system erroneously destroys insulin-producing beta cells. In turn, this leads to an inability of the body to control blood sugar. As a result, individuals must monitor and adjust their blood sugar on their own using a combination of finger sticks, continuous glucose monitors (CGM), insulin pumps, or insulin injections.

However, in a recent study, researchers explored the potential of reprogramming alpha cells in the pancreas to either become or function as beta cells. They used an adeno-associated virus to administer two different transcription factors – Pdx1 and MafA – into the pancreases of diabetic mice. With the overexpression of these factors, alpha cells developed into beta-like cells.

Alpha cells are ideal for reprogramming for numerous reasons including the fact that they naturally occur in abundance in the pancreas, they already function alongside beta cells in islets, and there are no apparent negative effects on glucose metabolism from reducing alpha cell levels, among other reasons.

Upon administering the transcription factors, euglycemia was restored within two weeks and maintained for four months. In addition, glucose response improved as well. After four months, autoimmune diabetes returned. However, this sheds light on potential therapeutic approaches for treating and managing diabetes and could be used in conjunction with immunosuppression for improved insulin production and blood glucose management.

Further testing is needed to determine if this approach is as effective in human pancreatic cells as it is in mouse models, though there have been some studies involving human islets in which alpha-to-beta-cell conversion occurred.

It is these types of studies that increase understanding of T1D and potential therapeutic treatment options. The Diabetes Research Connection (DRC), though not involved in this study, strives to support early career scientists in pursuing novel research studies aligned with preventing and curing T1D as well as improving quality of life for those living with the disease. DRC raises critical funds to enable these projects to move forward.

 

Learn More +

Pumps and CGMs Help to Manage A1C Levels for Individuals with Type 1 Diabetes

A1C tests show an average blood sugar level over the past two to three months. This is important not only for helping to diagnose type 1 and type 2 diabetes but also for managing the disease. Healthy individuals without diabetes should have an A1C level below 5.7%. For those with diabetes, a level of 7% or less while using insulin is the target and considered being well controlled. If A1C levels are higher, it may mean that changes are needed to the person’s treatment regimen.

A recent study of participants in the T1D Exchange Clinic Network found that even with high quality care, many people are still not meeting A1C goals. Out of more than 20,000 participants, only 21% of adults had an A1C below 7%, and only 17% of youth had an A1C below 7.5%. These statistics are likely to be even lower for the general U.S. population with T1D who do not participate in the T1D Exchange Clinic Network.

On a positive note, the study found that those who use continuous glucose monitors (CGMs) and insulin pumps tended to have better outcomes. Since the 2010-2012 study, use of CGMs increased by 30%, and use of insulin pumps increased by 6%. Compared to non-CGM users, those who used the device had A1C levels that were about 1% lower.

Furthermore, these devices also had an impact on hypoglycemic episodes and diabetic ketoacidosis (DKA). Only about 5% of CGM and pump users experienced severe lows compared to 7% of non-CGM users and 9% of non-pump users. CGM and pump users also had fewer incidences of DKA.

While there is still more work to be done to better control diabetes and A1C levels, the use of CGMs and insulin pumps seem to be beneficial for many individuals using them. With increased awareness and education about these options, as well as improved access, there is the potential to benefit even more individuals with T1D and help manage A1C.

The Diabetes Research Connection is always looking for new and innovative research projects to fund that support advancement in understanding T1D as well as preventing and curing this disease and improving quality of life for those living with it. Early career scientists can receive a grant ranging from $25,000 to $75,000 for their research project.

 

Learn More +
t1d research

Senescent Cells May Play Integral Role in Type 1 Diabetes

For years, the general consensus among scientists was that type 1 diabetes (T1D) was caused by the immune system erroneously destroying insulin-producing beta cells. Researchers have yet to determine exactly why the immune system reacts this way in some people but not others. A new study exploring cellular changes prior to the development of diabetes may have unlocked an important piece of the puzzle.

Research conducted by a team from the UCSF Diabetes Center has revealed that secretory senescence in some insulin-producing beta cells in the pancreas may be a trigger for this massive cellular destruction. When DNA damage causes cells to malfunction and harm surrounding cells, that is when the immune system kicks in and attacks the beta cells. But researchers have found this only occurs once the senescence has become widespread. If these senescent cells are eliminated early on, it may help prevent the onset of T1D because only damaged cells would be destroyed while healthy cells would remain.

The scientists studied both mouse models and pancreatic tissue from deceased human donors with diabetes. By administering an FDA-approved second-line chemotherapy agent called ABT-199 or Venetoclax, they were able to selectively target and destroy senescent beta cells in the pancreas. In their study, only 30 percent of mice given this drug developed T1D, while 75 percent of control mice developed T1D. Furthermore, the drug did not have any direct impact on healthy beta cells or the immune system in general.

Overall, they found that the risk of developing T1D could be decreased through the use of ABT-199. Further studies are necessary to determine whether periodic administration of the drug continues to clear senescent cells and keep the disease at bay. If so, this could become a potential new treatment option in the fight against T1D.

The Diabetes Research Connection (DRC) is interested in seeing how this discovery plays out and impacts future diabetes research and treatment. It could open doors to new treatment therapies and approaches for decreasing the risk of T1D through early intervention. The DRC supports early career scientists in accessing critical funds to support novel research studies focused on the prevention, treatment, and cure of T1D as well as improvements in quality of life for individuals living with the disease. To learn more, visit http://diabetesresearchconnection.org.

 

Learn More +

Removing Senescent Beta Cells May Help Prevent Type 1 Diabetes

Through data gathered in a DRC-sponsored research project, Peter Thompson, Ph.D., was able to secure additional funding that generated the results in this paper. Researchers explored the effects of senescent beta cells – or aging cells that no longer divide – on the development of type 1 diabetes (T1D).

In individuals with T1D, the body’s immune system attacks and destroys insulin-producing beta cells that are necessary for regulating blood glucose levels. However, researchers have found that senescent beta cells increase B-cell lymphoma 2 (Bcl-2) proteins, which in turn regulate cell death or apoptosis. By using a Bcl-2 inhibitor, researchers were able to eliminate senescent beta cells from the body which helps to stop the immune system’s destruction of insulin-producing beta cells and prevents the development of T1D.

This could be a major step forward in using the elimination of senescent beta cells as a therapeutic approach to treating or preventing T1D. More research is necessary to further explore the potential of this approach, but this study sheds new light on how the process impacts T1D and provides a greater understanding of the pathogenesis of the disease.

The Diabetes Research Connection (DRC) is proud to have played a role in providing the initial funding to enable Dr. Thompson and his team to collect necessary data to move forward and receive additional funding for the study. The DRC empowers early career scientists to pursue novel research studies on T1D through the support of individual, corporate, and foundation donations.

 

Learn More +

Could Reprogrammed α-Cells Reverse Type 1 Diabetes?

For years, researchers have been exploring different ways to promote insulin production in individuals with type 1 diabetes (T1D). They have tried to protect insulin-producing beta cells, implant new cells, leverage remaining cells, and more, all with varying levels of success. Another approach is to use existing cells within the body, be it stem cells or islet non-β-cells.

A recent study examines α-cells and pancreatic polypeptide (PPY)-producing γ-cells and their potential to become insulin-producing cells. Researchers collected these cells from both diabetic and non-diabetic human donors who were deceased and inserted them into diabetic mice. Then, they used the transcription factors PDX1 and MAFA to reprogram the cells to produce insulin. They found that the cells had a great deal of plasticity and retained their expression of α-cells markers while reversing diabetes and continuing to generate insulin after six months. This method has not yet been tested in humans.

Though more research is needed, their findings show the potential for reprogramming α-cells to do the work of insulin-producing β-cells which the body’s immune system has destroyed. The conversion of α-cells may also hold potential for treating degenerative diseases.

The Diabetes Research Connection (DRC) follows the latest research in the field and supports early career scientists in pursuing novel, peer-reviewed studies to keep the understanding of T1D going. Researchers receive 100% of funds raised by the DRC to execute studies regarding the diagnosis, treatment, and prevention of type 1 diabetes, as well as improving quality of life for individuals living with the disease. Find out more about current projects and how to support these efforts by visiting http://diabetesresearchconnection.org.

 

Learn More +

Influencing Cell Development to Support Type 1 Diabetes Treatment

One of the strategies researchers have been exploring for treating Type 1 Diabetes (T1D) is getting the body to generate new insulin-producing islet cells, or keeping it from destroying implanted cells. In individuals with T1D, the body does not produce enough insulin on its own to manage blood sugar levels because the immune system attacks and destroys these islet cells.

In a recent study, scientists at the University of Copenhagen (Denmark) and the Helmholtz Zentrum München (Germany) may have found a way to influence cell development in order for the body to produce more insulin-producing cells on its own. This could play an integral role in the development of improved treatment options for T1D.

The scientists closely examined a type of immature cells in the pancreas known as progenitor cells. They are similar to stem cells in that they can develop into different types of mature cells, but the variety is more limited, and they cannot divide and reproduce indefinitely. Mainly they become either endocrine beta cells or duct cells. Endocrine cells include islet cells.

By carefully studying the constant movement of these progenitor cells, researchers found that their development is strongly impacted by their environment and what types of structures they interact with. When they have greater interaction with the extracellular matrix laminin, they are more likely to become islet cells. When there is greater interaction with fibronectin, this leads to increased mechanical forces within the cell, in turn increasing the likelihood of development into duct cells.

Scientists believe they can transition this understanding to the development of stem cells in order to generate more insulin-producing islet cells by taking advantage of the mechanosignaling pathway. In terms of treatment options, this could contribute to the advancement of cell replacement therapies.

It is encouraging to see how researchers are enhancing and evolving their understanding of how cellular processes are related to type 1 diabetes and how these findings can support improved treatment options. Though not involved with this study, the Diabetes Research Connection strives to further these types of efforts by providing critical funding to early career scientists pursing research on T1D.

 

Learn More +

Are Diabetes Alert Dogs an Effective Resource for Managing Diabetes?

Service dogs are nothing new. There are dogs that are trained to alert to seizures or allergies, provide mobility support, work with individuals with hearing or vision difficulties, and much more. Included in this group are diabetic alert dogs who are trained to alert to low or high blood sugars in individuals with diabetes. But how accurate are these animals when detecting changes in blood sugar?

A recent study analyzed data from 27 dogs trained by Medical Detection Dogs, a UK organization, for 4,197 episodes of hyper- or hypoglycemia. They used information and records provided by the individuals paired with each dog as well as training instructors at the organization familiar with each dog-client partnership. Their findings showed a median sensitivity to out-of-range episodes (blood glucose levels that were too low or too high) of 70%; this was further broken down to a median of 83% for hypoglycemic episodes and 67% for hyperglycemic episodes. Overall, the dogs correctly alerted an average of 81% of the time.  However, four dogs were accurate for 100% of alerts.

It is important to note that results varied greatly among the dogs, and this could be contributed to many different factors including whether the owner was an adult or child, whether the dog was previously an owner’s pet or selected specifically for training, family size and lifestyle, the nature of the individual’s diabetes and how quickly blood sugar levels change, consistency with rewards and training, and the owner’s attitude toward the dog and confidence in its capabilities.

While owners should not rely solely on diabetic alert dogs to manage blood sugar, these animals can play an important role in improving quality of life. Some dogs are able to alert to decreasing or increasing blood sugar before they reach levels that are considered out of range. In addition, they can be beneficial for those who have decreased awareness of hypoglycemic episodes so that they know to check their glucose levels.

With so many factors that can influence a dog’s performance and abilities, each case is different. Using a diabetic alert dog in conjunction with a CGM or other system can provide more comprehensive support. There are few studies that have been done on the effectiveness and accuracy of medical alert dogs for diabetes, so more research is necessary to obtain a better understanding.

Organizations like the Diabetes Research Connection (DRC) support early career scientists in moving forward with novel research studies for type 1 diabetes by providing critical funding. Without these resources, some scientists may not be able to execute their work. Learn more about current projects and how to help by visiting http://diabetesresearchconnection.org.

Learn More +

Emily Smith’s Diaversary Wish

I was in seventh grade listening to my physical education teacher talk about the symptoms of type 1 diabetes (T1D), when I realized that I had been experiencing the same for months. When I spoke with my mother about what I had learned and how I was feeling, she immediately made an appointment with my doctor. At the appointment, the doctor took my blood sugar and it was in an extremely high glucose range, sending me to the hospital. That day I was diagnosed with T1D and the doctors expressed that it was a miracle that I caught it early. I was 12 years old when I diagnosed myself with a disease that forever changed my life.

Since my freshman year in high school, playing golf at the collegiate level has been one of my top goals. I am a junior at Point Loma Nazarene University and have been playing college golf for three years now. I have had to learn to be a busy student athlete, as well as a healthy diabetic. Living with T1D has not stopped me from doing the things I love, but it has a lot of challenges. Being a full-time student, having a job and long practice hours puts a toll on my body. Diabetes doesn’t make life easier for me. I constantly have to stop what I’m doing to check my blood sugar and make sure I’m taking care of myself. It is frustrating when my blood sugar affects the way I study, work and practice. I have learned to adjust to such a busy schedule, but I wish I didn’t have to which is why I find hope in research.

Knowing there are people researching ways to cure T1D keeps me going through the difficult times and provides me with hope. When I play golf, my goal is to win. I want the same thing for T1D. I want to beat this disease and see it be cured in my lifetime. I believe research is the path to a cure!

As a young diabetic, I believe it takes a community to connect for a cure, which is why it’s so important to raise awareness about research and fund new projects. My one wish on my Diaversary is to inspire the community to fund research so that we can find a cure for T1D in my lifetime. Together, we will make the difference!

Learn More +

Evaluating the Prevalence of Type 1 Diabetes Diagnoses in Older Adults

Many people still refer to type 1 diabetes as juvenile diabetes because approximately 85% of individuals with T1D are diagnosed in childhood. When diagnosis occurs in adulthood, it is often type 2 diabetes. However, T1D can occur at any age, and more adults are being diagnosed after age 30. Though it still only accounts for approximately 4% of T1D cases, a correct diagnosis is imperative for proper treatment of the disease.

Because a higher proportion of adults develop T2D, some who actually have T1D may be misdiagnosed. A recent study compared data for 379,511 white European individuals registered with UK Biobank.  Of those individuals 13,250 developed diabetes by age 60. When divided between those with high versus low genetic risk of T1D, there were 1,286 more people diagnosed with T1D in the high-risk group than in the low-risk group.

Compared to individuals with T2D, those with type 1 tended to have lower BMIs, relied on insulin use within the first year after diagnosis, and were at higher risk for developing diabetic ketoacidosis. Some type 2 individuals were actually found to have type 1 diabetes instead when it was realized that their diabetes was not well managed using strategies other than insulin, and that they required increasingly higher doses.

There have been very few studies conducted on the prevalence of T1D diagnosis in older adults because so many individuals are diagnosed at a young age. Testing for autoantibodies and C-peptide can be very beneficial, but it is not always accurate in confirming a diagnosis because some people have false positives. However, it can be used to help differentiate between T1D and T2D and more accurately diagnose adults.

“I recently diagnosed someone with new-onset T1D at 82 years old. We are definitely seeing more of this. Especially when we test for the antibodies as soon as possible,” says one of the Diabetes Research Connection’s esteemed Scientific Review Committee members, Dr. Athena Philis-Tsimikas.

The combination of genetic susceptibility and antibody testing has helped to raise awareness of the number of adults being newly diagnosed with T1D, though more research is still needed. It is essential that individuals be correctly diagnosed as soon as possible in order to receive the most effective treatment for managing their diabetes.

The Diabetes Research Connection (DRC) strives to provide valuable funding for early career scientists who are researching type 1 diabetes so that they can advance understanding, diagnosis, and treatment of the disease and one day find a cure. Learn more about current research projects and how to help by visiting http://diabetesresearchconnection.org.

Learn More +

Diabulimia: Battling Type 1 Diabetes and Eating Disorders Together

In managing type 1 diabetes (T1D), individuals can become very focused on the numbers associated with their condition – blood sugar levels, A1C, weight, insulin dosage – as well as what they eat. The food they consume impacts blood sugar and insulin needs. Some people struggle with not just T1D, but an eating disorder as well.

Dealing with diabetes can cause changes in weight. Some people lose weight quickly before diagnosis and gain it back once they begin treatment to help their body. This can be difficult to deal with, and individuals may begin restricting their insulin in order to control their weight, a condition known as diabulimia.

This can be very dangerous as their blood sugar levels can spiral out of control and increase risk of diabetic ketoacidosis, bacterial infections, muscle atrophy, dehydration, delayed wound healing, peripheral neuropathy, kidney disease, and more. These issues can become potentially fatal if not properly treated.

Researchers recently evaluated 11 online blogs of individuals with diabulimia to explore their experiences with this condition and the challenges they have faced. The bloggers expressed a variety of motives for choosing to restrict their insulin, as well as diverse complications from doing so. However, they found that having a strong support system, recognizing triggers for relapse, and improving diabetes self-management were beneficial to recovery.

Treating diabulimia can be difficult because rapidly altering blood glucose levels can be dangerous. It must be done carefully under medical supervision. In addition, treatment cannot only address diabetes management. It must also focus on eating disorders and improving the person’s relationship with insulin, food, and self-perception. There are many underlying issues that should be taken into consideration. Treatment providers should be well-versed in both T1D and eating disorders.

More in-depth research is necessary to gain a better understanding of effective interventions and treatment approaches for diabulimia. Organizations like the Diabetes Research Connection (DRC) provide critical funding for peer-reviewed, novel studies regarding T1D. Early career researchers can make strides in advancing diabetes management and eventually finding a cure. To learn more about current projects or support these efforts, visit http://diabetesresearchconnection.org.

Learn More +

Exploring Collagen as a Minimally Invasive Approach to Managing Type 1 Diabetes

Diabetes management is a full-time job. Individuals with type 1 diabetes (T1D) don’t get a day off; they must be constantly monitoring their blood sugar and administering insulin as necessary. There are many devices that can assist with this process, but it is still a constant concern. However, researchers from Purdue University and the Indiana University School of Medicine may have developed a new approach that could manage glucose levels for up to 90 days at a time.

By combining pancreatic cells with collagen – a natural protein in the body already – they may be able to decrease rejection and enhance insulin independence. Previous methods have focused on injecting islet cells directly into the pancreas because it has a strong blood flow to transport insulin and glucose.  This tends to be a rather invasive procedure, though, and the body still destroys a significant portion of the transplanted islet cells.

This new treatment is administered under the skin just like other injections. The collagen solution solidifies and the body recognizes the collagen, so it does not destroy it. Instead, it provides blood flow that helps transport the insulin released by the islet cells contained within the solution. The procedure is minimally invasive and could be done in an office setting rather than an operating room.

Initial studies were conducted on mice, and now the researchers are ready to test this approach on naturally diabetic dogs and eventually humans.  Diabetes occurs in dogs very similarly to how it does in humans. The researchers will work with the College of Veterinary Medicine at Purdue for these clinical trials.

In mice with diabetes, pre-clinical trials found that diabetes was reversed for at least 90 days when a twin mouse donor was used to collect islet cells, and at least 40 days when a non-twin mouse donor was used for islet cells.  In addition, virtually all of the cells survived the transplant regardless of donor type. This could potentially eliminate the need for multiple donors which are required for current treatments due to the destruction of transplanted cells by the immune system. Giving individuals with T1D a shot every 40 to 90 days to maintain blood sugar could provide a great deal more freedom than they currently have.

It is these types of studies that have the potential to change the lives of individuals living with T1D for the better. Researchers have made significant advancements over the years in better understanding the disease and developing treatment strategies that could lead to an eventual cure. Diabetes Research Connection (DRC), though not involved in this study, is interested to see how the clinical trials progress and what it could mean for the future of diabetes management.

DRC is committed to supporting early career scientists pursuing novel research studies on type 1 diabetes to prevent and cure the disease as well as improve quality of life and minimize complications. Mainstream funding is highly competitive, and the DRC gives young researchers another option for receiving the support they need to drive projects forward. To learn more about current projects and support these efforts, visit http://diabetesresearchconnection.org.

Learn More +

Australian Government Increases Support for Individuals with Type 1 Diabetes

Managing diabetes is expensive. It requires buying insulin, testing supplies, monitoring devices and supplies, emergency supplies, and more. There is also the cost of doctor visits, specialist visits, and emergency care in the event of severe hyperglycemia, hypoglycemia, or other issues. In some cases, poor diabetes management and overall health are a result of not being able to afford consistent care.

The federal government in Australia is taking steps to change this. The government has committed an additional $100 million over four years to increase access to free continuous glucose monitoring (CGM) devices for individuals with type 1 diabetes (T1D). This has the potential to save families thousands of dollars in out-of-pocket expenses each year. While there are some eligibility requirements, in general the expansion of services will include children and adolescents with T1D or conditions requiring insulin, pregnant women with T1D, and adults with T1D who have a high clinical need.

Patients can choose from a CGM sensor that is attached to the stomach or the arm. Arm sensors are used with the FreeStyle Libre Flash Glucose Monitoring System, and information is sent directly to the patient’s cell phone or diabetes management device. This allows closer tracking of glucose levels without constant finger sticks, and information can be easily shared with healthcare providers. In addition, having access to CGM devices may reduce patient anxiety and stress regarding diabetes management, as well as decrease emergency hospital visits.

It is encouraging to see the government recognizing the importance of quality diabetes care and stepping up to support patients living with T1D to make diabetes management more affordable and accessible. The Diabetes Research Connection (DRC) is interested to see the influence this could have on future diabetes care and the impact it will have on patients. The DRC is committed to raising funds for peer-reviewed, novel research studies on T1D by early career scientists. These projects play an instrumental role in advancing knowledge, treatment, and potential cures for the disease. Learn more about current research projects and support these efforts by visiting http://diabetesresearchconnection.org.

Learn More +

Multiple Daily Injections May Improve Glycemic Control During Pregnancy for Women with T1D

Effectively managing blood sugar can be difficult in normal situations, but it can be even more challenging during pregnancy. Women must be cognizant of not only their own health, but also that of their unborn child. Infants are at risk for neonatal hypoglycemia. A recent study examined the impact of multiple daily injections (MDI) versus using an insulin pump on glycemic control during pregnancy for women with type 1 diabetes.

The study involved 123 women using MDI therapy and 125 women with insulin pumps. The researchers based the study on the treatment the women were already using prior to the trial; they did not assign a treatment method. Participants spanned multiple countries including the United States, Canada, England, Ireland, Scotland, Spain, and Italy. Women entered the study during their first trimester, and it lasted until they were at 34 weeks of gestation.

During this time, HbA1c levels were measured. The results showed that both treatment methods were equally effective during the first trimester with no statistically significant differences. However, at 34 weeks gestation, women who used MDI therapy showed a greater decrease in HbA1c levels versus women using insulin pumps. In addition, insulin pump users reported higher levels of gestational hypertension, neonatal hypoglycemia, and neonatal intensive care unit admissions for longer than 24 hours. However, these women also reported lower levels of hypoglycemia-related anxiety than those using MDI therapy, but also had lower levels of general well-being.

Overall, it appeared that MDI therapy resulted in greater decreases in HbA1c levels and improved glycemic control. There is still more research necessary, however, to verify these results. There were several factors that may have influenced findings and outcomes.

This study shows the importance of understanding the effects of T1D on different conditions such as pregnancy and the value of researching various treatment options to help women make more informed decisions regarding their health. Though not involved in this study, the Diabetes Research Connection follows the latest trends and developments in the field and supports early career scientists by providing critical funding for novel research regarding T1D. Continued funding is essential for advancing research and diabetes care. To learn more, visit http://diabetesresearchconnection.org.

Learn More +

20 Years Later: The Impact of the Edmonton Protocol

Management and treatment of type 1 diabetes have advanced over the years, but it is interesting to see what has withstood the test of time. For instance, islet cell transplantation (ICT) was first used in humans in 1989. Though the protocol changed a bit in 2000, the concept has remained relatively the same ever since. It is known as the Edmonton Protocol.

Researchers have followed the Edmonton Protocol since 1999, tracking factors such as the number of procedures, adverse events, and insulin independence. Studies have shown that insulin independence rates have been fairly consistent from 1999 through 2015 with around 50% of patients maintaining insulin independence after one year, and 25% maintaining insulin independence after five years. In addition, fewer patients have experienced adverse events over the years, and whole-body immunosuppression has become more localized. However, the number of centers performing ICT and the number of patients receiving this treatment have also declined.

The Protocol continues to rely on the use of cadaver islet cells which are inserted into the body of a patient with T1D.  The transplanted cells are protected by immune suppression or some type of encapsulation to reduce the risk of the body attacking and destroying these cells.

One challenge that has persisted over the years is identifying a sustainable source of islet cells aside from cadavers. Researchers have been testing methods for using human stem cells or animal islet cells, but more tests are needed to potentially make these options feasible. Furthermore, the issue remains of protecting cells in the long-term. Currently, the best option is immunosuppression, but even that has limited effectiveness. While there have been advances made in the medications and encapsulation devices used, there is still work that needs to be done to address undesirable side effects such as decreased ability of the body to fight off diseases or infection.

It is interesting to see how the Edmonton Protocol has remained the standard for ICT for 20 years, and the Diabetes Research Connection (DRC) continues to follow progress and changes related to this type of treatment for T1D. T1D continues to affect around 1.25 million Americans, and researchers are always looking for improved options for treating, managing, and potentially curing this disease.

The DRC provides necessary funding to early career scientists to conduct novel research studies related to type 1 diabetes. These projects are aimed at preventing and curing T1D as well as minimizing complications and improving quality of life for those living with this disease. To learn more about current research projects and support these efforts, visit http://diabetesresearchconnection.org.

Learn More +

Where is Diabetes Research Connection headed in 2019?

Since 2015, we have funded 17 innovative, peer-reviewed type 1 diabetes (T1D) projects and distributed $700,000 directly to early-career scientists, building a pipeline of talented T1D researchers. In partnership with our community, the main initiative in 2019 is to raise $300,000 to fund 4-10 of the most promising T1D research projects.

This year, we want to complete our $1M research campaign and accomplish the following goals:

  1. Continue to fund the most promising and innovative science that will advance the continuum of T1D research for a cure and ways to better care for those with the disease.
  2. Be a catalyst in changing the paradigm for how diabetes research is currently funded in the U.S.
  3. Publish new research project findings online and in respected journals to advance the industry.
  4. Ensure transparency by allowing supporters to choose which research they believe to be the most promising and may eliminate this disease.

Since 2015, 100% of funds designated for research went directly to the scientists’ lab. We are committed to continuing this in 2019.

For a summary of the accomplishments in 2018, click here. We will update you throughout 2019 on the progress of our $1M research campaign. We believe it takes a community to connect for a cure and together we make the difference!

Learn More +

2018 Year in Review

This year marked several important milestones and has been a time of growth. With the generosity of our supporters, we funded five innovative, peer-reviewed type 1 diabetes (T1D) projects, bringing the total to 17. Our sponsored early-career scientists developed data to show beginnings of proof of principle concepts that in turn precipitated substantial additional grants and publish their work in diabetes journals.

We’re committed to keeping our community updated, below are some highlights from 2018.

January was an exciting month, we launched our 13th project, Jane Kim, M.D., UCSD/Rady Children’s Hospital, What Type of Type 1 Diabetes Does Your Child Have?; our 14th project, Youjia Hu, Ph.D., Yale University Diabetes Center, A Bacteria in the Gut May Predict Type 1 Diabetes; our 15th project, Tamara Oser, M.D., Penn State College of Medicine, Using Technology to Improve Diabetes Self-Management; and our 16th project, Haisong Liu, Ph.D., Salk Institute for Biological Studies, A Safe and Cost-Effective Stem Cell Approach for Treating Diabetes.

In February, Peter Thompson, Ph.D., completed his DRC project and received a more substantial grant with funds up to 3 years from the Hillblom Foundation. The results obtained from the DRC project allowed him to secure additional funding which is exactly the purpose of DRC and why it’s important to continue building a pipeline of new T1D researchers.

The results continued In April. Jeremy Racine, Ph.D., completed his DRC project and publishes results in Diabetes. His research created a better animal model to study immune responses to beta cell transplants in T1D for the entire diabetes research field. The new mouse model from this study is now being used by others in T1D research because it better represents the diverse T1D population.

In May, there was standing room only at an event we hosted with the Jewish Community Foundation. Over 50 people heard Dr. John Glass, Dr. Duc Dong and Dr. CC. King share information on the latest scientific breakthroughs in T1D research. For those that took advantage of the lab tour, they felt hopeful after seeing tangible results in the lab!

We announced our partnership with Greater Than in June. Together, we created a fashionably-forward T1D t-shirt collection for our monthly supporters. All funds raised through the DRC Collection go to support early-career T1D researchers, 100% of funds raised go directly to the scientists.

In July, we ran our first social media contest. Stories were sent in from our 3,676 followers on Instagram and 23,631 followers on Facebook. The winning story was featured at our 1st annual event in September.

Joseph Lancman, Ph.D., completed his DRC project in August. His research enhanced the activity and the delivery of two transcription factors to significantly increase the efficiency of triggering an early endoderm like identity in muscle cells that remain in an animal’s body. Because of this key advance, his lab is positioned now to take advantage of cutting-edge technology that will advance his T1D research. Dr. Lancman produced a manuscript with his research results and submitted it to a top tier journal.

We hosted our 1st annual Del Mar Dance for Diabetes in September. There were 250 people who joined us in connecting for a cure and helped us raise over $350,000 for innovative T1D research. Guests enjoyed the food, music, drinks, silent auction and dancing under the stars at the silent dance party.

In October, Yo Suzuki, Ph.D., gains proof of concept through his DRC-sponsored research project and secures additional funding in the amount of $1.2M from a prestigious Foundation to continue his work. Dr. Suzuki is another example of how DRC and its supporters are building a pipeline of promising, new T1D researchers that are expanding the field of diabetes research.

We added a full-time member to our team at DRC in November, Casey Davis, Director of Development. We also launched our 17th research project, Marika Bogdani, MD, Ph.D., Benaroya Research Institute, Offensive “Blocking” to Defeat T1D Before it Strikes!

In December, we reached a few milestones. Our online community grew to over 30,000 and we doubled the number of financial supporters in 2018. On Facebook this year, 35 people created fundraising campaigns and helped us raised nearly $7,000. Due to the success of our fundraising efforts all year-long, we were able to fund the five projects launched this year, bringing the total to 17 new T1D research projects.

This past year was important for moving research forward and adding to the field of diabetes. We could not do what we do without the continued support of our community. Thank you for being a part of the DRC family.

It takes a community to connect for a cure!

 

 

Learn More +

Diabetic Ketoacidosis Risk May Increase with Cannabis Use

Legalization of recreational and medicinal cannabis use has increased throughout the United States, but that does not mean that it does not come with risks. While cannabis can have positive effects for certain conditions, it may also be dangerous for others. A recent study found that using cannabis may double the risk of individuals with type 1 diabetes of developing diabetic ketoacidosis.

In a small, self-reported study of 450 individuals in Colorado with type 1 diabetes, approximately 30% reported using cannabis within the past 12 months. Of that group, around 40% smoked, used edibles, or vaped at least four times per week. The study found that while 8.2% of non-users had been hospitalized for diabetic ketoacidosis within the last year, this jumped to more than 20% for cannabis users. Furthermore, individuals with type 1 diabetes who used cannabis also had higher average HbA1c levels than non-users. Researchers believe the increased risk may come from the fact that “cannabinoids alter gut motility and cause hyperemesis.”

However, there is still more research necessary to further explore this risk as the study had several limitations. Many of the participants who reported using cannabis were younger with lower income and lower use of diabetes technology such as insulin pumps and continuous glucose monitoring (CGM). In addition, access to healthcare was not taken into consideration. Furthermore, some participants may have had underlying conditions that also impacted their risk of developing diabetic ketoacidosis.

Regardless, this study opens doors for more in-depth research regarding the effects of cannabis use on type 1 diabetes. It is important to understand how this drug may impact health, treatment, and quality of life.

The Diabetes Research Connection (DRC), though not involved with this study, strives to support novel research studies regarding all aspects of type 1 diabetes by providing essential funding to early career scientists. This is made possible by donations from individuals, corporations, and foundations, and 100% of research funds go directly to the scientists. To learn more about current projects and how to help, visit http://diabetesresearchconnection.org.

Learn More +

Researchers Examine Gut Bacteria in Children for Risk Factors for T1D

In an effort to better understand how type 1 diabetes may develop, researchers took a closer look at how gut health changes from infancy through childhood and into adulthood. They used data collected through The Environmental Determinants of Diabetes in Youth (TEDDY) study, which utilized reports from Finnish, German, Italian, Mexican, American, and Turkish children. This particular study on gut bacteria focused on 783 children between the ages of three months and five years from Finland, Germany, Sweden, and the United States.

Some of the factors they examined were whether children were breastfed or formula fed and for how long, any illnesses they contracted, antibiotics they took, environmental changes, and life experiences. Their gut microbial profile was determined through stool samples. One interesting finding was that when there were more Bacteroides species and a decreased production of short-chain fatty acids, there was an increased susceptibility to islet autoimmunity (IA) or type 1 diabetes (T1D).

The researchers found that the gut microbiomes differed greatly between participants, and there was a marked difference in children who were breastfed versus those that were not, as well as once solid foods were introduced into their diet. Breastfeeding showed higher levels of an enzyme that helps with milk fermentation, while solid foods increased enzymes that help metabolize fiber. In addition, participants who had taken oral antibiotics showed disrupted microbial stability along with decreases in some strains of Bifidobacterium. However, early probiotic supplementation helped protect control subjects against islet autoimmunity.

All of these factors may play a role in the development of islet autoimmunity or T1D. This study has increased awareness of the role that environmental factors may play in T1D along with genetics. There are still numerous issues this study did not address, but it is a strong starting point for further research, especially when it comes to the influence of breastfeeding and oral antibiotics on the development of T1D.

The Diabetes Research Connection (DRC) is interested to see how this study may impact future research in T1D and furthering the understanding of factors related to disease development and prevention. The DRC supports early career scientists pursuing novel research related to the prevention and treatment of T1D as well as improved quality of life for individuals living with this disease. Learn more about current studies and how to help by visiting http://diabetesresearchconnection.org.

Learn More +

Nasal Glucagon May Become New Option for Treating Hypoglycemia

When blood sugar drops and hypoglycemia occurs, it is critical for individuals with type 1 diabetes to receive immediate treatment to raise their blood sugar. If left untreated, it can lead to severe confusion, seizures, or even loss of consciousness. One of the main ways of treating hypoglycemia is administering glucagon.

Glucagon is a hormone that stimulates the body to convert glycogen into glucose. It also keeps the liver from consuming too much glucose so that it can be circulated in the bloodstream instead. Traditionally, glucagon is delivered through an intramuscular injection. A solution is mixed to dissolve the glucagon, then it is administered by syringe.

However, many caregivers – or even bystanders – may be hesitant to give someone else a shot of glucagon. Preparing the syringe and shot is a multistep process and can be confusing if the person is not properly trained. Plus, they are under considerable stress in emergency situations where it must be given, which can complicate things even further.

A new study has found that nasal glucagon may be just as effective as intramuscular glucagon in raising blood sugar levels during episodes of hypoglycemia. There is no preparation necessary before administering the medication. It is a powder that comes in a single-use device that is sprayed up the nose. It isn’t even necessary for the patient to inhale because the powder is absorbed on its own.

Both treatment methods were tested on 70 adult participants with type 1 diabetes. A state of hypoglycemia was induced, and then they were treated with either the intramuscular or nasal glucagon. One to seven days later, the process was repeated, and the other form of medication was administered. In 100 percent of cases, hypoglycemia was reversed and participants had no serious adverse events. In 97 percent of cases, treatment success was achieved within 15 minutes.

This new treatment option was presented at the European Association for the Study of Diabetes (EASD) by Leona Plum-Moerschel, MD, of Profil Mainz, Germany. According to Plum-Moerschel, “I think we can all agree that the safety profile is very much acceptable for an emergency treatment. I personally would expect that, due to its simplicity of use, nasal glucagon will create a greater community who can render quick aid in a rescue situation.”

The Diabetes Research Connection (DRC) is interested to see if this nasal formulation will be brought to market and how it will affect the treatment of hypoglycemia in children and adults. It is encouraging to see treatment options becoming more user-friendly so that even non-medical personnel can effectively administer emergency medications.

The DRC supports research geared toward the treatment and prevention of type 1 diabetes, as well as improvement of quality of life for those living with the disease. Access to funding is essential for scientists to continue advancing their research, and the DRC provides these types of resources. To learn more about current projects and donate to support these efforts, visit http://diabetesresearchconnection.org.

Learn More +

More Adults May have Type 1 Diabetes Than Previously Thought

Type 1 diabetes (T1D) used to be known as juvenile diabetes because it is often first diagnosed during childhood. Since the pancreas produces little to no insulin, difficulty regulating blood sugar is typically noticed early on. However, that is not always the case. There are also many individuals who are not diagnosed with T1D until after age 30. In addition, they may be mistakenly identified as having type 2 diabetes rather than type 1.

A recent study compared data from the UK Biobank and also conducted clinical trials to determine how adults are diagnosed and treated when diabetes is suspected. Many people were initially diagnosed with type 2 diabetes and did not receive insulin treatment. They used an oral glucose-lowering medication in order to manage their blood sugar. But even when using rapid acting insulin, some still had difficulty with blood sugar control.

Approximately 5 percent of adults diagnosed with T2D actually have T1D. While this may not seem significant, proper diagnosis is critical to providing accurate treatment and education for patients. In addition, insurance may not cover the cost of supplies for those with T2D, but insulin pumps and continuous glucose monitors may be covered for those with T1D. This can make a major difference in care for many people.

The study involved nearly 600 adults from South West England who were diagnosed with diabetes after age 30 between 2007 and 2017. Results showed that 123 participants (21 percent) had type 1 diabetes with severe insulin deficiency requiring continuous insulin treatment within three years of diagnosis. There were 306 participants diagnosed with type 2 diabetes based on a peptide level of 600 pmol/L or greater for at least three years after initial diagnosis. Another 115 participants were not included in the analysis due to indeterminate results. The study also included 220 participants who had been diagnosed with T1D at age 30 or younger for comparison purposes.

While symptoms are often similar, the study found that “rapid insulin requirement was highly predictive of late-onset type 1 diabetes, with 84 percent requiring insulin within 1 year. And of all the patients treated with insulin within 3 years, 57 percent developed sever endogenous insulin deficiency consistent with type 1 diabetes.” Compared to participants with T2D, those with T1D typically had a lower BMI, were more likely to have a positive islet autoantibody test, and had higher genetic risk scores for T1D.

It can be difficult to differentiate between the two types of diabetes, but medical providers should carefully monitor those they believe may have T1D and conduct related tests to determine whether they should be treated initially using insulin as opposed to an oral medication.

The study was presented at the European Association for the Study of Diabetes (EASD) 2018 Annual Meeting by Nicholas J. Thomas, MD, from the University of Exeter, United Kingdom. Dr. Thomas’ team is working on developing algorithms to improve the accuracy of diabetes diagnoses in order to provide the best care for patients.

Accurate diagnosis of type 1 or type 2 diabetes is essential for effective care and patient education. The Diabetes Research Connection supports research related to T1D and advancing understanding related to the diagnosis, treatment, and prevention of this disease. Early career scientists are provided with up to $70,000 in funding to conduct peer-reviewed, novel research studies. Learn more and find a project to support by visiting http://diabetesresearchconnection.org.

Learn More +

Building a Pipeline of Young Researchers

New and innovative research is essential to continuing to expand scientific knowledge and improve the future of healthcare. Yet over the years, the biomedical community has seen a troubling downward trend in funding, support, and opportunities for young researchers. A study published in the Proceedings of the National Academy of Sciences of the United States of America investigated some potential factors for why investigators are struggling early on in their careers and not receiving as much funding to stimulate independent research.

For years, attaining an R01 from the National Institutes of Health (NIH) has been a prerequisite for young biomedical researchers to become independent investigators and start their own laboratories. Yet the average age that they receive their first R01 has steadily increased from less than 38 years old in 1980 to more than 45 years old in 2013. In 1980, 5.6% of grant funding went to investigators who were younger than 36, but by 2012, this had dropped to just 1.3%. Principal investigators over age 65 are awarded more than twice as many R01s as those under age 36.

It has become increasingly challenging for young scientists to secure necessary funds to advance their careers in research. In turn, this puts future generations of biomedical researchers in jeopardy because more scientists are becoming disheartened and exploring other career paths. It also disrupts the emergence of scientific breakthroughs from bright young minds with untapped potential.

There are many reasons why young investigators may be losing out on the fight for NIH funding. For one, some are spending more time in post-doctoral programs training and it is taking longer for them to secure faculty positions. There may also be unintentional bias from review committees to select more established investigators who have a proven track record of success rather than taking a risk on unknown scientists. Funding has been reduced over the years making the competition fiercer and the awarding of grants increasingly selective. This also means that universities must shoulder a larger portion of the costs associated with supporting research endeavors.

The Diabetes Research Connection (DRC) is reversing this trend by funding early-career scientists who then leverage funding from DRC to seek additional funding from larger foundations and NIH.

 

DRC is supporting the next generation by directing its fundraising toward early-career scientists. It recognizes that mainstream funding is highly competitive, and, as the above research has shown, is less frequently awarded to young researchers. Through DRC, scientists receive up to $70,000 from donors for their research projects, which can be enough to give them a strong foundation to conduct novel research related to type 1 diabetes. To learn more about current projects and support these efforts, visit http://diabetesresearchconnection.org.

Learn More +

The Growing Cost of Type 1 Diabetes Management

For individuals with type 1 diabetes (T1D), insulin is a life-saver. Literally. Without it, their body can go into a state of diabetic ketoacidosis where blood sugar becomes so high that the body shuts down. It can be fatal if not treated immediately. Since the pancreas does not produce enough (or in some cases any) insulin on its own, people with T1D rely on insulin daily to keep their blood sugar in check. However, the cost of this life-saving hormone has continued to increase over years, and for some, it has become unaffordable, even with insurance.
A vial of insulin can cost around $250 without insurance or other financial assistance. It is not unusual for someone with T1D to use between two and four vials every month. That means they could be paying $500 to $1,000 for a medication that is critical to their survival. Even with insurance, deductibles can be thousands of dollars. This means they must pay this money up front – in addition to monthly premiums – before insurance kicks in to help offset costs. For some, this is simply not feasible. Despite having a solid job, the cost can be too much on top of other living expenses such as rent, utilities, and food.
Unfortunately, this means that some people with type 1 diabetes have resorted to rationing their insulin supply in an effort to make it last longer. They administer less insulin than their body actually needs to keep their blood sugar within a desirable range. This can quickly spiral out of control and lead to complications such as diabetic ketoacidosis. It is a dangerous decision, but if they cannot afford more insulin, they may feel it is better than going without.
Many people are fighting for improved regulations regarding pricing for insulin as well as insurance so that people do not have to choose between paying for insulin versus other bills, or deciding how to make the insulin they do have last until they can afford more. There are organizations that can help individuals with diabetes to find financial assistance to help with the cost of insulin and other diabetes supplies, and sometimes they may be able to get insulin for free depending on the situation. Not everyone is aware of these options and resources, however, so advocacy is so important.
Type 1 diabetes is a manageable condition, but people must have access to the necessary resources in order to survive. While treatment options have improved over the years, the cost is still an issue.
The Diabetes Research Connection (DRC) strives to support peer-reviewed, novel research studies regarding type 1 diabetes treatment and management. As scientists gain a greater understanding of this disease, it may help to make future care more affordable and eventually lead to a cure. To learn more about the Diabetes Research Connection and support current projects, visit http://diabetesresearchconnection.org.

Learn More +

Increasing Polyclonal IgMs May Help Prevent or Reverse T1D

A common strategy used by researchers in treating type 1 diabetes (T1D) is to destroy or deactivate immune cells that mistakenly attack insulin-producing beta cells. There have been many variations on this approach over the years, but effectiveness has been limited. Typically, these autoreactive cells reemerge. However, tackled this issue from a different angle instead of looking at how to increase certain protective cells.

Researchers, including Daniel Moore who works with the Diabetes Research Connection, found that IgMs have immunoregulatory properties that help to limit inflammatory responses and decrease autoreactive B lymphocytes. Islet-reactive B lymphocytes have been found to produce anti-islet antibodies linked to the development of stage 1 T1D. IgM may also help to stimulate the production of regulatory T cells.

When administered in non-obese diabetic (NOD) mice, purified IgM was able to prevent the development of diabetes and increase regulatory T cells. However, IgM that was taken from pre-diabetic mice was not as effective. IgM obtained from Swiss Webster donor mice (recognized as healthy, not pre-diabetic, mice) was highly effective in reversing hyperglycemia and preventing the onset of diabetes. The researchers also used human IgM from healthy donors and found similar results.

The study shows the potential effectiveness of healthy donor IgMs in promoting normal immune homeostasis, preventing diabetes occurrence, and reversing new-onset diabetes. While immunoglobulin therapy is not a new concept, it usually contains low levels of IgM, whereas this study focused on higher levels of purified IgM. More research is necessary to further explore the potential of donor polyclonal IgM for the prevention and treatment of type 1 diabetes.

Daniel Moore, a senior author on the study, is a scientist associated with the Diabetes Research Connection (DRC). The DRC is committed to funding novel, peer-reviewed research focused on preventing and curing T1D as well as improving quality of life for those with the disease. It has played a role in supporting dozens of projects. To learn more about current studies, visit http://diabetesresearchconnection.org.

Learn More +

Factors Identified for More Effective Type 1 Diabetes Care

Managing type 1 diabetes is a complex process. Every person is different and must figure out what strategies and devices work best for their care, and that involves working together with their healthcare provider. Results of a recent audit have identified some key factors that contribute to better diabetes management from a provider perspective.

Participants in the study included top clinics that care for more than 500 individuals with type 1 diabetes. Results found that at up to 40 percent of patients achieved HbA1c levels of 58mmol/mol or lower at some centers, while in other centers only 20 percent of patients hit this target. The data was analyzed in an effort to identify factors that may have contributed to these differences.

Some of the strategies that have been found effective include providing structured education and dedicated pump clinics for patients to support them in diabetes care. More than half of the centers that participated in the audit reported having nurses and staff that were specially trained in type 1 diabetes care. Several of the centers also offered support services via phone and online to patients and focused on improving access to continuous glucose monitors (CGMs).

It may also be beneficial for treatment centers to partner with other services including psychological care and community organizations to improve outcomes for patients. Taking a collaborative approach could support patients in managing health across multiple areas thereby enhancing overall type 1 diabetes care.

The Diabetes Research Connection (DRC), though not involved in this study, is committed to advancing knowledge and treatment when it comes to type 1 diabetes. The DRC provides critical funding to support early-career scientists in conducting peer-reviewed, novel research studies. To learn more and contribute to these efforts, visit http://diabetesresearchconnection.org.

Learn More +

Advancing Diabetes Management Technology

Over the years, treatment options for type 1 diabetes have greatly expanded. From the development of continuous glucose monitors to insulin pumps to artificial pancreas systems, researchers are striving to improve the lives of those living with this disease. However, there have also been challenges regarding the accuracy, usability, and lifespan of these options.

One issue that exists is effectively coordinating treatment options to work together. Depending on the device an individual uses, it may not be compatible with a product from a different company, or even from the same company. There may be multiple steps involved in reading and responding to results in order to effectively manage type 1 diabetes.

JDRF is looking toward easing these challenges by partnering with SFC Fluidics, Inc., a medical technology company, to create an interoperable insulin pump. This device would provide continuous insulin therapy through a tubeless system, but unlike other technology, it would be an open protocol system. That means that it would be able to communicate and share information seamlessly with other devices such as CGMs or third-party technology. This would be a huge step forward in potentially improving diabetes care and management. JDRF and SFC Fluidics are currently developing and testing this technology as well as reviewing liability and regulatory requirements.

The Diabetes Research Connection (DRC) is excited to see how this project unfolds and what it could mean for the future of diabetes management. It is through the tireless work of researchers, scientists, and medical professionals that treatment options have continued to improve and more is understood about this complex disease. The DRC provides funding to early career scientists pursuing novel research studies related to type 1 diabetes in an effort to prevent and cure the disease as well as improve quality of life for those living with T1D. To learn more and support current research projects, visit http://diabetesresearchconnection.org.

Learn More +

Next Stop Cure? A Quick History of Diabetes Research

From an insulin pump that’s the size of a backpack to stem cells hitching rides on what’s the size of a band-aid, diabetes research has come a long way. It is not without tireless efforts from the scientific community, keen investors, visionaries and donors, alike, who have moved the needle.

With research funding, people managing this challenging disease have received tools that help them to live better lives. Every advancement or milestone has elevated our understanding of Type 1, achieved improved management and has gotten us one step closer to an actual cure. That’s why donating to diabetes research is so important — it’s the only way we’ll eliminate this disease.

Diabetes research milestones

The timeline of advancements

1889: Pancreatic diabetes discovered

Oskar Minkowski and Joseph Von Mering met accidentally in a library in 1889. Striking up a conversation, they began to debate whether the pancreas helped digest and absorb fats. Performing a pancreatectomy on a dog that same night, they found the dog developed glycosuria, a condition associated with diabetes that causes the production of a lot of urine. Minkowski found the urine was 12% sugar. They then depancreatized another dog and found that prevented hyperglycemia.

1921: Discovery of insulin

In 1921, Frederick Banting and Charles Best closed off the pancreatic ducts of a dog then removed the pancreas. They crushed, froze, and salted it. Then they gave this substance to a diabetic dog and found the dog’s blood sugar dropped significantly.

1922: Purification of insulin

James Collip refined Banting and Best’s insulin extraction and purification method. The new substance was tested in the first human in 1922. 14-year old Leonard Thompson was in a critical condition. He was given an insulin injection in his buttocks. This had a negative effect on him and he grew sicker. Collip worked to improve the insulin’s quality and Thompson received another injection soon after. This time, it lowered his blood sugar and saved his life.

1959: Type 1 and Type 2

Solomon Berson and Rosalyn Yalow measured how much insulin was in a diabetic’s blood. This led to the discovery that some diabetics could still make insulin, which split the diabetic world into two sections—Type 1 and Type 2.

1961: Glucagon introduced

Eli Lilly and Company succeeded in creating a pure form of glucagon, a hormone that elevates blood glucose levels. The introduction of glucagon as an injectable treatment became life-saving in emergency situations of severe hypoglycemia.

1963: The first pump

Designed by Dr. Arnold the pump that looks like a backpack delivers both glucagon and insulin.

1966: First pancreas transplant

The University of Minnesota Hospital was the first to successfully transplant a pancreas into a human. The success rate of these transplants has increased since then as better surgical techniques and immune suppressant drugs improved.

1967: Laser treatment for diabetic blinding

William Beetham and Lloyd Aiello created a laser treatment that, over the next five years, radically changed diabetic retinopathy care.  

1976: A1C Test developed

Researchers at the Joslin Diabetes Center in Boston perfected the A1C test, which can provide information about a diabetic’s average blood glucose control over the previous 2-3 months.

1978: First human insulin synthesized

Genentech discovered how to synthesize human insulin from E. coli. The scientists had to synthesize genes then put them in the E. coli bacteria. This forced the E. coli to produce insulin chains. Two chains were then combined and a human insulin molecule was made. They turned each individual bacterium into a manufacturing plant for human insulin.

1986: Insulin Pen

Insulin pens were introduced, replacing disposable syringes. Now diabetics could vary their dose. The pen also gave them more privacy as it was less obvious what the pens were for.

1990: Insulin external pump

These pumps continuously monitor sugar levels and allow the wearer more freedom and control over their sugar levels.

1999: First continuous glucose monitor (CGM)

MiniMed received FDA approval for the first CGM device in the USA. The company was later bought by Medtronic. Initially, it was called a “retrospective CGM device” and was meant to look back at a 72 hours monitoring of blood sugars.

2006: First inhaled insulin is FDA approved

Exubera was the first inhaled insulin. It was put on the market in 2006 but taken off in 2007 due to low sales. Since then researches have created Affreza, an improved version that hit the market in 2014.

2014: Stem cell islets implant

Viacyte created a therapy called VC-01, which implants a collection of young stem cells in an immune-protective container under the skin. The young stem cells develop into insulin-producing cells that release insulin when the body needs it.

2016: Hybrid closed-loop system

Medtronic receives FDA approval for the first hyped closed-loop system which connects CGM and insulin pump. It learns what an individual’s insulin needs are and takes action to minimize both high and low glucose levels. It delivers variable insulin 24 hours a day.

 

 

Learn More +

WHY SUPPORT DIABETES RESEARCH

Less than one hundred years ago, Type 1 diabetes was a mysterious, daunting disease. Parents watched their children’s health quickly deteriorate as they awaited their inevitable early demise. By the early 20th century, medical advancements, stemming from intensive research, completely transformed the fate of people living with Type 1 diabetes.

In 1889, upon removing and then replacing the pancreas of a dog, scientists found that that the pancreas played a major role in preventing high blood glucose, paving the way for future diabetes treatment advancements. One of these major advancements came over thirty years later in 1921-22, radically changing the lives of thousands: the discovery and purification of animal insulin. While this insulin greatly increased the lifespan of those with Type 1, it caused painful allergic reactions in some because of its foreign origin from pigs and cows. However, by 1978, researchers discovered how to create synthetic human insulin from E. coli bacteria, allowing increased insulin absorption without the allergic side effects.

Before the introduction of the disposable syringe in 1956, and then insulin pens in the 1980s, needles for insulin injections were commonly sharpened at home with a grinding stone. Since 1990, insulin pens can even be replaced by an external insulin pump, allowing people with T1D more freedom and control.

The first successful pancreas transplant occurred in the University of Minnesota Hospital in 1966. Pancreas transplants have provided a life-saving option for those with Type 1 diabetes with extremely poor health, and they have continued progressing in refinement, with better surgical techniques and the development of improved immunosuppressant drugs.

Unfortunately, despite the advancements, the long-term complications of Type 1 diabetes are numerous. Research, however, has been effectively diminishing their severity. In 1966, a laser treatment was developed that changed retinopathy care, a common cause of blindness with those who have diabetes. The A1C test, developed in 1976, assesses overall control of blood glucose over a span of three months, thereby showing the effectiveness of a treatment plan.

A modern-day person with diabetes can utilize resources and that wouldn’t have been possible without scientific research. Medical treatments have gone from starvation diets to compact, portable devices that control, measure and track blood glucose levels every second of the day.

Diabetes research is relatively young yet is advancing exponentially. The life of a person diagnosed with diabetes in the last decade and someone diagnosed fifty years ago is incomparable. A cure would mean liberation for people with Type 1 diabetes from constant injections, constant monitoring, and constant worry. However, it is completely unattainable without outside support. Diabetes is one of the most prevalent diseases in the United States with a multitude of costly and life-threatening complications.  Unfortunately, research for this disease still remains one of the least funded by the national government.

In order to be successful, in order to change and save lives, diabetes research requires funding. When someone supports an organization that funds research, they become a part of positive change. Support of scientific research has already transformed the world we live in: we have already cured many of the devastating diseases of the 20th century such as polio and smallpox. Be a part of the profound scientific evolution that is occurring in the 21st century. Supporting diabetes research isn’t just funding scientists and laboratories — it’s providing hope for the millions of children and adults affected by this chronic illness.

Disease prevalence versus funding

Diabetes only receives 3% of the total funding from the NIH (National Institute of Health), compared to cancer (16%) and HIV/AIDS (9%). However, there are 29 million people living with diabetes in the US, compared to 1.2 million living with HIV/AIDS and 13.4 million living with either a current or past experience with cancer. With these statistics, The NIH spends around $38 each year per person with diabetes, $417 per person with HIV/AIDS, and $2,583 per person with cancer.

Short-term complications

In addition to long-term major complications, immediate dangers may occur if a person with Type 1 diabetes has low or high blood glucose levels. These include the following:

  • Severe Hypoglycemia: extremely low blood sugars can cause seizures, loss of consciousness or death. Death from unrecognized low blood sugar upon going to sleep accounts for 6% of all deaths in people with Type 1 diabetes under forty-years old.
  • Ketoacidosis: If someone with T1D does not receive insulin, the body will break down fat to produce energy, releasing ketones into the bloodstream. When ketone levels become too high, diabetic ketoacidosis (DKA) can cause vomiting and dehydration, and even cause one to fall into a coma.

Long-term complications of Type 1

People with Type 1 diabetes may have access to insulin and blood glucose monitors, but such treatment still cannot completely prevent future complications. Common complications include:

  • Eye disease: diabetic retinopathy is the leading cause of blindness in diabetics. High blood sugar damages the blood vessels in the back of the eye, eventually causing vision loss.
  • Kidney disease: High blood sugar levels overwork the kidneys filtration system. A damaged filter allows waste products to build up in the blood, and the kidneys begin to fail (end-stage renal disease).
  • Nerve damage: Symptoms of diabetic neuropathy can range from pain to complete numbness in the legs or feet, causing severe disabling.
  • Heart disease: people with Type 1 diabetes have four times the risk of suffering a heart attack.

Everyday management of Type 1

To avoid long-term and short-term health risks, Type 1 diabetes must be managed diligently. People with T1D may have a specialized treatment plan, however, there are certain consistencies for all people with Type 1. Insulin must be taken after every meal and blood glucose levels must be checked several times a day. Special attention must be paid to the foods that a person with Type 1 diabetes consumes so that their insulin dosage is appropriately calibrated. As early as infancy, such intensive daily procedures become the responsibilities of every person managing Type 1. Better care means a better quality of life with Type 1. Diabetes research is the key to improving methods of care and ultimately finding a cure.

DRC provides funding to early-career scientists pursuing novel research studies related to type 1 diabetes in an effort to prevent and cure the disease as well as improve quality of life for those living with T1D. To learn more and support current research projects, visit http://diabetesresearchconnection.org.

Learn More +

Protecting Pancreatic Islet Cells Following Transplantation for T1D

One of the challenges researchers have faced in developing long-term treatment options for type 1 diabetes (T1D) using allogeneic cells is that the body often rejects these cells. This means that patients would still need to take anti-rejection or immunosuppressant medications, which can be hard on the body and contribute to other issues. However, researchers may have found an option that protects cells while allowing them to control glucose levels.

In a new study, researchers encapsulated pancreatic islet cells with seven different alginate formulations and transplanted them into non-human primates. The goal was to maintain function of the cells without disruption by common challenges such as foreign-body response, pericapsular fibrotic overgrowth, or sedimentation of the microspheres. Of the seven alginates used, three showed transient islet graft function with decreased foreign-body response. One of the chemically modified microsphere formulations protected cells and glucose-response for four months without requiring immunosuppression.

This is a positive step toward correcting insulin deficiency using allogeneic cells. More research is necessary on the alginate formulations, and clinical trials have not yet been conducted in humans. The Diabetes Research Connection (DRC), though not involved in this trial, is interested to see where this study will lead and what it may mean for the future of T1D treatment options.

The DRC is committed to supporting T1D research and providing funding for early career scientists to carry out novel research projects. Learn more about current projects by visiting http://diabetesresearchconnection.org and consider donating to these efforts.

Learn More +

David Kindness wants to give back

“About a decade ago, when I was 15 years old, I was diagnosed with type 1 diabetes (T1D). It was really scary news. Overnight, doctors explained that I’d have to start counting carbs and managing carb intake, give myself insulin shots multiple times a day, and the scariest of all.. “There is no cure.” Since then, I’ve learned to manage it well. T1D graduated from college with me, it’s traveled internationally, gone on many hikes and road trips. It’s surfed, longboarded, rock climbed and skied with me, and it’s affected every step in the process of my life. As I’ve taught myself adventure photography in recent years, T1D has been behind the lens of every shot I’ve taken. Today, a decade after my diagnosis, I believe that a permanent cure for diabetes could be found within the next decade, from research. I want to use something I love – my photography – to help fund that research, so I’m donating a percentage of all proceeds from sales of both printed and digital photography to the search for a cure for type 1 diabetes.”

Learn More +

Qualifying for Social Security Benefits With Diabetes Complications

Guest Post by Disability Benefits Help

If you’re unable to manage your diabetes with lifestyle changes and medication, you may be eligible for assistance. The Social Security Administration (SSA) offers monthly disability benefits for people who are unable to work due to an illness or injury that will last for at least 12 months. While it is challenging to qualify with diabetes, those with significant complications may be eligible for help.

Medical Eligibility Via the Blue Book

The SSA uses its own medical guidebook of eligibility criteria, known colloquially as the Blue Book, when deeming eligibility status. Diabetes is not listed as a disabling condition in the Blue Book, but some of its complications are. Here are a couple of listings you may be able to qualify under:

Amputation

An amputation alone also will not qualify for disability benefits, but you will be eligible if you can meet any one of the following criteria:

  • You have both hands amputated
  • You have two limbs amputated but you’re unable to walk without use of two crutches, a walker, or a wheelchair
  • You have an amputation at the hip

If your mobility is severely limited, you should be able to qualify under the amputation listing. Keep in mind that this listing is for people who are unable to successfully use artificial limbs. If you’re able to walk with an artificial limb, you will not qualify here.

Neuropathy

Neuropathy will also qualify under the Blue Book. The first listing states that you’ll be eligible if you have neuropathy in at least two limbs and it makes it impossible for you to either stand from a seated position, balance while standing upright, or walk without using crutches, a walker, or a wheelchair.

If you still have some mobility but it’s affecting your ability to work, you will also qualify if you have significant difficulty with any one of the following areas of intellectual function:

  • Understanding, remembering, and applying information
  • Interacting with others in a work setting
  • Concentrating and completing tasks
  • “Adapting oneself,” which means controlling emotions in a work setting

The entire Blue Book can be found online, so you can review it with your doctor to determine if you qualify. There are dozens of listings that may be relevant for people with diabetes, including cardiovascular disorders, additional mobility problems, and more.

Starting Your Application

The easiest way to apply for disability is online on the SSA’s website. If you’d prefer, you can also apply in person with the assistance from a Social Security representative. Call the SSA toll free at 1-800-772-1213 to make an appointment to apply in person at your closest SSA office.

It should take three to five months to hear back from the SSA regarding your claim. The more disabilities and complications of diabetes you list on your application, the better your odds of approval.

Resources:

Learn More +

Mother, grandmother, wife and career woman with T1D shares hope

“I have had 50+ years of dealing with Type 1 Diabetes.  All of my life has been centered around being a Diabetic and dealing with it for 30 years as a Dental Hygienist,  a wife,  a mother,  and also, now, a Grandmother.  Research to me is the key to living.  We must fight hard to find a cure and without research that progress will never happen!” Vicki.

Learn More +

FDA Approval of Insulin Pump with Basal-IQ™ Technology Increases Options for T1D Patients

There is a plethora of options when it comes to managing type 1 diabetes. Some people don’t mind the finger sticks and calculation of insulin dosages, while others prefer to have everything automated for better monitoring and control. As technology changes and research improves, so do the devices used to treat T1D, which can make the process easier and less stressful.

The FDA recently approved the t:slim X2™ Insulin Pump with Basal-IQ™ technology by Tandem Diabetes Care®, Inc., and it is expected to be available in August 2018. This device is an automated insulin delivery system, but it has the ability to work with integrated continuous glucose monitoring (iCGM) systems and can automatically suspend insulin delivery when low glucose levels are predicted. The Basal-IQ technology can predict glucose levels up to 30 minutes in advance and respond accordingly. Once glucose rises, it once again begins administering insulin.

Patients who have the Dexcom G6® CGM will be able to use this device in conjunction with it. During the study, participants had a 31 percent reduction in the amount of time their blood sugar levels were at 70 mg/dL or lower. In addition, they experienced no rebound hyperglycemia thanks to the Basal-IQ technology.

Patients are in control of how they use the system and can turn the Basal-IQ feature on or off depending on their preference. They can also use the touchscreen system to display a CGM chart or simply the Bolus and Option buttons. Plus, they can customize the alerts received for highs and lows or insulin delivery being turned on or off. Furthermore, when integrated with the Dexcom G6 CGM, there are no finger sticks required to calibrate the system or determine dosing at mealtimes thanks to the Basal-IQ technology.

The Diabetes Research Connection (DRC) is excited to see new technology being developed and approved in order to improve quality of life and diabetes management for individuals with T1D. The organization strives to support continued advancement in the field through funding early career scientists conducting peer-reviewed studies. To learn more about current projects and find out how you can help, visit https://diabetesresearchconnection.org.

Learn More +

Robby’s Story: Hoping for a Solution through Research

I was diagnosed with type 1 diabetes when I was 12 years old. My older brother was diagnosed with type 1 diabetes previously, so my family was quite familiar with managing type 1. Upon receiving this diagnosis, my parents looked at type 1 diabetes as simply something that was an inconvenience and nothing more. It was never that big of a deal and I was healthy, so I played competitive tennis and have been very active and health-conscious throughout my entire life.

I followed the standard American diet when first diagnosed and received care from the Mayo Clinic in Rochester, MN. While in middle school I started to change my diet. Then in high school I stumbled across a book which planted the seed in my mind that if I took better care of my body, my body’s own stem cells could create insulin producing cells and I would be able to discontinue insulin. So, I went on a mission to do absolutely anything it took to give my body the best chance to heal itself over the past 11 years. I remain on a whole food and most fruit diet as these foods are packed with nutrition, in hopes that that those nutrients will support healing.

Early in this process I hit a plateau of insulin sensitivity / insulin usage. I don’t think my theory of my body healing itself and producing its own insulin is as easy as I hoped it was going to be! However, I am a constant learner and am passionate about helping those living with diabetes. I am very curious to dig in deeper into the world of type 1 diabetes research. I would like to speak with the early- career researchers at Diabetes Research Connection in order to ask them a long list of questions I have. I am living healthfully every day, trying to help find the way to reverse type 1 diabetes, but for now I manage it on a daily basis. I’m very much aligned with DRC’s mission in finding a solution to type 1 diabetes and believe research can truly be the answer! You can learn more about Robby by visiting his website https://www.masteringdiabetes.org/.

Learn More +

Mom and Son Tell Their T1D Story

“I was diagnosed at age 13 and never really did research or looked into why diabetes happened to me or anyone. I just ignored the facts and took care of myself. Then 15 years later when my son was 2 &1/2 he was diagnosed. After that diabetes was a whole new item to me! I have done so much research and follow so many diabetes accounts on social media, always staying with the latest and greatest equipment. I love that I can get on your page and reach out and someone is there for moral support!! It’s like having another family!! Knowing that at any time if I want to see what is going on in the diabetes tech or research world all I have to do is hop on social media and go to DRC and it’s all there in one place.” ~ Rashell

Learn More +

New Technology May Mean Longer Lasting CGM Sensors

If you have ever used a continuous glucose monitoring (CGM) system to manage type 1 diabetes (T1D), you know that the glucose sensors typically only last a few days before they must be replaced. This can be an annoying yet necessary part of ensuring accurate results and effectively managing blood sugar levels. However, Senseonics recently received approval from the FDA on its Premarket Approval (PMA) application for a device containing a sensor that lasts up to three months before needing to be replaced.

The Eversense® CGM system is the only one to offer this continuous long-term monitoring. Rather than patients inserting the sensor themselves, it is implanted subcutaneously in the upper arm by a physician as an in-office procedure. This can help to alleviate the concern that individuals may have about doing it themselves or experiencing discomfort while wearing the sensor.

CGM systems can greatly improve diabetes management, but unfortunately, many people still are not taking advantage of this technology either because it is not available to them, they are concerned about the accuracy of the system, or they do not wear it as consistently as they should. Since this new system uses a sensor that lasts for up to three months, it eliminates the need to regularly change out sensors. Plus, the transmitter used to relay information is easily recharged without having to change sensors, and it works using Bluetooth technology. It also offers discreet on-body vibrations to give users alerts. CGM systems have been shown to decrease the risk of severe hypoglycemia and improve glucose control in individuals with T1D.

The Diabetes Research Connection (DRC) is interested to see how long-term sensors impact CGM use and management of T1D. The DRC is committed to supporting advancements in the treatment and prevention of T1D as well as improved quality of life for individuals living with the disease. That is why the organization provides valuable funding for early career scientists to conduct peer-reviewed, novel research studies for T1D. Check out current projects and learn how you can help by visiting https://diabetesresearchconnection.org.

Learn More +

Metformin May Support Insulin Therapy for Type 1 Diabetes

Managing diabetes can be a very tedious process. Individuals must be vigilant about monitoring diet and exercise and how it affects their blood glucose levels. Insulin must be correctly dosed and administered to counteract these effects. Even with careful tracking, some individuals still have difficulty managing their type 1 diabetes and develop insulin resistance, metabolic syndrome, and other complications.

Typically metformin is a medication prescribed for those with pre-diabetes or type 2 diabetes to increase insulin sensitivity and insulin action. However, a recent study examined the effects of combining metformin with insulin therapy to treat individuals with type 1 diabetes who had poorly controlled blood glucose levels despite intensive insulin therapy. The study was small, involving 58 individuals with T1D who had comparable characteristics in terms of age, sex, BMI, blood pressure, lipids, hypertension, body weight, insulin dose requirement, duration of diabetes, and other factors.

Twenty-nine participants continued to receive insulin therapy alone, while the other 29 received a combination of metformin and insulin therapy. The study, which lasted one year, found that those in the metformin-insulin group required a lower dose of insulin after one year (a decrease of 0.03 IU/kg/d) compared to those in the insulin only group who actually required a higher dose of insulin (an increase of 0.11 IU/kg/d).  The metformin-insulin group also saw a decrease in metabolic syndrome prevalence, fasting plasma glucose (FPG), and postprandial plasma glucose (PPG) compared to the insulin only group.

A larger study is necessary to further evaluate long-term effects, glucose control, insulin sensitivity, and other factors related to effectively managing type 1 diabetes. However, the study sheds light on the potential benefits of combining metformin with insulin therapy for not just individuals with type 2 diabetes, but those with type 1 diabetes as well.

The Diabetes Research Connection (DRC) is interested to see what this could mean for future diabetes management strategies and approaches to helping those with poor glucose control despite intensive insulin therapy. The DRC supports novel research studies on type 1 diabetes by early-career scientists and provides critical funding for these projects. To learn more about current projects or find out how to help, visit Our Projects.

Learn More +

Insurance Gaps Put Individuals with Type 1 Diabetes at Increased Risk

Over the past few years, health insurance has gone through some major changes. Since type 1 diabetes requires constant monitoring and daily management with insulin, having insurance coverage is essential to help offset costs and promote effective self-care. A recent study found that individuals who experience gaps in private healthcare insurance coverage may be at greater risk for health crises.

The study involved data collected from approximately 169,000 adults with type 1 diabetes between the ages of 19 and 64 during the time period of early 2001 to mid-2015. Researchers evaluated this data and found that visits to the emergency room, hospital, or urgent care were five times more likely when patients regained coverage after a gap in insurance of 30 to 60 days. When the coverage gap expanded to 91 to 120 days, those individuals were seven times more likely to visit the emergency room, hospital, or urgent care.

These visits can be incredibly costly, but risk can be reduced with consistent insurance coverage and self-care under the direction of a physician. The study found that young adults – those in their 20s and 30s – were more likely to experience gaps in coverage than middle-aged and older adults. What part of the country individuals resided in played a role as well, with the north-central and southern parts of the United States seeing higher rates of gaps.

Since type 1 diabetes affects approximately 1.25 million Americans, it is essential that quality care and insurance coverage are available to support improved health and well-being and reduce the risk of preventable health crises.

The Diabetes Research Connection (DRC) is passionate about exploring various aspects of type 1 diabetes from prevention and treatment to potential cures and improved quality of life. The DRC provides valuable funding to support novel research studies regarding this condition. To learn more about current projects or donate to these efforts, visit Our Projects.

Learn More +

Exploring the Role of Microorganisms in Glucose Management

Although diabetes has been a topic of research for decades, there are still many unknowns. Researches are always discovering different elements that affect how the disease develops and is managed. Gut bacteria has been a recent area of interest, and researchers at the Salk Institute in La Jolla, California, have stumbled upon an interesting discovery.

While attempting to study the circadian rhythms of mouse metabolism following depletion of the mouse’s microbiome, they noticed something else intriguing: after being treated with antibiotics to kill off certain microorganisms, they found that the mice were able to more quickly and efficiently process glucose. The colon became enlarged as it took on a more prominent role in absorbing extra sugar, which decreased blood glucose levels. In addition, liver function changed as well, which affected metabolism.

Mice – and humans – all have a microbiome composed of a variety of microorganisms that all play a role in health. While some microbes put mice at greater risk of developing diabetes, some actually decrease this risk. The researchers are looking more closely at how certain bacteria affect the body and its function. They already know that ridding the body of bacteria has a significant impact on a mouse’s metabolism.

The scientists are now developing plans to study what elements in the microbiome affect liver function. According to Satchidananda Panda, senior author on the paper and a professor in the Regulatory Biology Laboratory at the Salk Institute, “Perhaps we could find ways to support the growth of certain gut microbes and induce these changes in glucose regulation in humans. We are now one step closer to translating this research.”

Though there is still a great deal of research that needs to be done before potential treatment options for diabetes emerge, it is a step in the right direction. The Diabetes Research Connection (DRC) follows the latest industry news to see what is on the horizon for diabetes care and treatment. The DRC contributes to advancements in research by providing funding for early career scientists pursuing novel research studies related to type 1 diabetes. Find out more about the organization and how to help by visiting Our Projects.

Learn More +

Medicare Implements Positive Changes to Policies for CGMs

Managing type 1 diabetes can be a difficult task. Individuals must constantly be aware of whether their blood glucose levels are rising, falling, or remaining stable. This has a significant impact on their well-being and quality of life. Many people have turned to continuous glucose monitors (CGMs) to help them track their blood glucose and adjust their insulin dosages and diet accordingly.

However, until January 2017, CGMs were not covered by Medicare, and even after new policies were rolled out at the start of the year, only certain devices were covered (the Dexcom G5 CGM and later the Abbott Freestyle Libre CGM). While this was a win for individuals with T1D who used these devices, there was a huge catch to the new policy: the CGMs could not be used in conjunction with smartphone applications. They had to be used solely with the provided data receiver. If the smartphone app was used, Medicare would not cover their supplies.

This was problematic because the app could be used to share information with family members, caregivers, and medical providers and allowed for closer tracking and monitoring of blood glucose levels. The app also provided helpful alerts and alarms so that users would know when their blood sugar was becoming too high or low and could respond accordingly.

After much lobbying and debate, the policy was finally changed in June 2018. Under the revised policy, individuals with CGMs are permitted to use the smartphone application in conjunction with the receiver and device. This is an important change because it means individuals have more options and flexibility in managing their diabetes and can share information as necessary.

The Diabetes Research Connection (DRC) acknowledges this as a step in the right direction toward making diabetes care more accessible and affordable and supporting data sharing to make more informed treatment-related decisions. T1D is a challenging disease, and researchers are learning more every day about causes, treatment options, and potential cures. The DRC supports early career scientists in conducting peer-reviewed novel research studies regarding T1D. To learn more, visit Our Projects.

Learn More +

Existing Medication May Be Beneficial in Treating and Preventing Type 1 Diabetes

A great deal of research has gone into better understanding type 1 diabetes and its potential causes. Many treatment options have been developed to support individuals in effectively managing their blood sugar whether through insulin, transplanted cells, or other means. Scientists are also always striving to create new options.

However, through some high-tech research, researchers may have found a way to treat and even possibly prevent type 1 diabetes using a medication that already exists and is approved by the Food and Drug Administration (FDA). Dr. Aaron Michels, an associate professor of medicine at the University of Colorado Anschutz Medical Campus in Aurora and his team found that more than half of individuals who are at risk for developing diabetes have the DQ8 molecule.

They believe that by blocking DQ8, they may be able to prevent the development of the disease and treat those patients already affected. Using a high-tech computer, they analyzed FDA-approved drugs for those that could be used to inhibit the DQ8 molecule. And it just so happens that one exists – methyldopa, a medication commonly used to treat high blood pressure. Unlike immune suppressant drugs which may be used to try to help manage T1D and can have undesirable side effects, methyldopa does not have a negative impact on the immune function of cells but still inhibits DQ8.

The researchers explored the potential of this drug using mice to confirm their findings, then conducted a small clinical study on 20 human participants with T1D with similar results. The results of their study may lead the way to more effective treatment and prevention of type 1 diabetes as well as other health conditions. They are set to conduct a larger clinical study to further investigate the use of methyldopa for T1D. According to Dr. Michels, “With this drug, we can potentially prevent up to 60 percent of type 1 diabetes in those at risk for the disease. This is a very significant development.”

The Diabetes Research Connection (DRC) is excited to see where this study may lead and how it may impact future treatment and prevention efforts for the disease. It could open doors to other studies on personalized treatment at the molecular level. Though not involved in this study, the DRC supports peer-reviewed novel research projects by early-career scientists focused on type 1 diabetes. To learn more about current projects and how to support these efforts, visit Our Projects.

Learn More +
Treating Type 1 Diabetes

Gene Therapy Targets Pancreatic Cells in Treating Type 1 Diabetes

A major challenge in treating type 1 diabetes is figuring out how to overcome the destruction of insulin-producing beta cells. The body mistakenly targets and destroys these cells leaving the body unable to manage blood sugar levels on its own. Individuals with this disease must be vigilant about checking their blood sugar and administering insulin as needed, which can be an exhausting task.

Current treatment options include injection of insulin, use of continuous glucose monitors and insulin pumps, stem cell therapies and implants, partial transplants, and other strategies. These treatments vary in effectiveness from person to person as well as how long they last. In addition, some require patients to continue taking anti-rejection drugs which can be hard on the body.

However, a new treatment may offer longer lasting, more effective results in the battle against type 1 diabetes. A recent study found that by using gene therapy targeting two specific genes, insulin-producing cells may be able to be recreated in the body using existing alpha cells. A healthy pancreas contains both alpha and beta cells. In those with type 1 diabetes, insulin-producing beta cells are destroyed. But when mice were injected with gene therapy to reprogram some alpha cells to take over the function of these beta cells, they were once again able to produce insulin and manage blood sugar.

The genetic changes were administered using a bioengineered virus. The virus had been altered so that it would not make the recipient ill, but could still penetrate cells to modify their DNA. The alpha cells then assumed insulin-producing functions without triggering the immune system to attack because the cells are already normally present in the body. Furthermore, researchers found that by delivering the gene therapy endoscopically into the pancreas, it stayed there and did not negatively impact other areas of the body.

While the treatment only lasted approximately four months in mice, scientists believe that it could be effective for several years in humans before retreatment would be necessary. The researchers are seeking FDA approval to begin clinical trials on humans using this gene therapy to evaluate its effectiveness and safety in treating type 1 and type 2 diabetes. There are approximately 30.3 million people in the United States and 422 million people worldwide affected by diabetes.

The Diabetes Research Connection (DRC) is excited to see how gene therapy may advance treatment options for type 1 diabetes and improve quality of life for millions of people. The DRC supports novel research studies for type 1 diabetes and provides essential funding early career scientists to carry out these studies. To learn more about current projects and donate to this research, visit Our Projects.

Learn More +

Advanced Technology Could Bypass Finger Sticks for Glucose Monitoring

One of the annoying – but necessary – parts of managing type 1 diabetes in conducting multiple finger sticks every day to check blood sugar levels. This is one of the most accurate ways that people with diabetes can determine whether they need to inject themselves with insulin or not, especially around mealtimes and when being physically active. But advances in technology may have found a way to accurately monitor blood sugar levels without requiring finger sticks.

Dexcom is a company that is well known for its continuous glucose monitoring (CGM) systems, and they are set to launch a new model, the Dexcom G6, in June. Ahead of this release, one user got to try it out early and shared her experiences with the new system.

The G6 comes with a sensor that is placed under the skin and affixed with a transmitter that wirelessly relays information to a receiver. The receiver is often the person’s smartphone and is accessed using a corresponding app. There is an auto-applicator that makes inserting the sensor quick, easy, and painless. Once inserted, it is functional for 10 days before shutting off and needing to be replaced.

However, the sensor continuously monitors blood sugar levels so that individuals do not have to constantly check on their own using a glucometer. For this user, it took a few days for the G6 to begin accurately reading her glucose levels, so she did double-check initially with the glucometer. However, soon they began giving the same readings, and she could track her blood sugar using the app.

The system also gives alerts and alarms for when blood sugar becomes too high or dips too low. It can even alert to downward trends before blood sugar gets the chance to become dangerously low, allowing individuals to appropriately respond and keep levels more stable. In addition, the company has made the transmitter sleeker and more comfortable. It has a 28% lower profile than the current G5 model and affixes flush against the sensor.

Since the system has not been released to the public yet, the final cost is unknown. Plus, this will vary depending on an individual’s insurance coverage or if they are paying out of pocket. However, it provides many benefits in helping individuals with T1D in effectively managing their blood sugar in a more hands-free way and providing readings around the clock that can be viewed through the app or receiver. The benefits may outweigh the costs in the end for some.

The Diabetes Research Connection (DRC) is excited to see how technology is changing to better support the needs of individuals with type 1 diabetes and help them manage their condition. As research continues to advance, so do technology and treatment options. The DRC is committed to empowering early career scientists in pursuing novel research around type 1 diabetes and raises funds to support these efforts. To learn more about current projects and provide support, visit http://diabetesresearchconnection.org.

Learn More +

Connecting For A Cure: June 2018 Newsletter

We’re committed to keeping our community updated on all projects and DRC happenings. Click on the link below to read more about what we’ve been up to this year and the impact we are making together. We believe it takes a community to connect for a cure and will continue supporting innovative scientific inquiry until diabetes is eliminated.
newsletter  

Learn More +

Improved Blood Flow in Pancreatic Islet Cells May Help Treat Diabetes

Pancreatic islet cells play an essential role in managing blood glucose levels. These are the cells that produce insulin and control blood sugar. However, they require strong blood vessels and blood flow to work effectively. One of the challenges of trying to transplant these cells is that they lose blood vessels in the process.

Scientists mainly from Yokohama City University may have found a way to overcome this issue and improve the efficacy of transplanted pancreatic islet cells. To improve blood flow, they cultured pancreatic islet tissue with both endothelial cells and mesenchymal stem cells. Endothelial cells are what line blood vessels and mesenchymal stem cells have the ability to develop into different types of cells. This combination led to pancreatic islet tissue that contained its own network of blood vessels.

When transplanted into mice with severe type 1 diabetes, the tissue allowed for a strong blood flow which in turn helped to better control blood glucose levels. More than 90% of diabetic mice implanted with this tissue survived for at least five days. The diabetic mice who only received pancreatic islet cells but not the tissue with the blood vessel network only had a survival rate of around 40%. And in those mice who did not receive any type of transplant, nearly all passed away.

The scientists are in the process of expanding their research beyond the use of endothelial and mesenchymal stem cells to exploring the potential of human induced pluripotent stem (iPS) cells. They are hopeful that this will lead to another treatment option for individuals with type 1 diabetes.

The Diabetes Research Connection (DRC) is excited to see how this research progresses and the results it yields in terms of treating and managing type 1 diabetes. While not involved with this particular study, the DRC supports early career scientists in pursuing peer-reviewed, novel research projects geared toward the treatment, prevention, and cure of type 1 diabetes, as well as improving quality of life for those living with the disease. To learn more and support these efforts, visit http://diabetesresearchconnection.org.

Learn More +

Bystander T Cells May Play A More Active Role in Managing Type 1 Diabetes

There are many types of cells that all play a different role in how the body works. Some of these cell functions are very well known, while others are still somewhat mysterious. For years, scientists have thought that bystander T cells were just that – bystanders, since it was unclear what their exact purpose was. A team of researchers led by Matthias von Herrath, M.D., a professor in the La Jolla Institute for Allergy and Immunology’s Division of Developmental Immunology and a diabetes researcher, may have shed more light on what these cells actually do.

von Herrath and his team found that while the initial belief was that bystander T cells increased inflammation associated with type 1 diabetes and the destruction of insulin-producing islet cells, they may actually do quite the opposite. They found that these cells interfere with the destruction of pancreatic beta cells rather than supporting it. CD8+ cytotoxic T lymphocytes (CLTs) target specific protein fragments in islet cells and then destroy the cells. During this process, the pancreata are flooded with other T cells that do not detect protein fragments, which are referred to as the bystander T cells.

New studies by von Herrath and his team have discovered that in mouse models, the bystander T cells actually have an immunosuppressive effect and decrease the effect of cell-killing CLTs. When mice were injected with equal amounts of cell-killing and bystander CLTs, the researchers found that there was “little cell death, and the specific CLTs recruited to the pancreas became less harmful.” When decreased amounts of bystander cells were injected, there was more cell destruction as well as the occurrence of diabetes symptoms including hyperglycemia. Two possible theories are that bystander T cells limit access to beta cells as they flood the cell protecting them from cell-killing CLTs, or possibly that the bystanders interfered with the signals sent to cell-killing CLTs, so, therefore, the destruction is not as severe.

The study demonstrates that regulatory T cells are not the only cells that help counteract inflammation, though they are the most widely recognized for having this effect. With this new insight into bystander T cells, researchers may be able to leverage them in future treatment for type 1 diabetes. Additional research is necessary to explore this potential.

The Diabetes Research Connection, for which von Herrath is a member of the Scientific Review Committee, is committed to supporting novel research studies for type 1 diabetes. The DRC provides funding to support early career scientists in carrying out research projects geared toward preventing and curing type 1 diabetes as well as minimizing complications and improving quality of life for those living with the disease. Learn more about current projects and how to support these efforts by visiting http://diabetesresearchconnection.org.

Learn More +

Breaking Down the Prevalence of Type 1 Diabetes

Diabetes affects people of all ages and races throughout the United States, but just how many people are impacted? According to a self-report study of 33,028 adults with a response rate of 54.3%, approximately 21 million adults (8.6%) in the United States were living with type 2 diabetes in 2016, and approximately 1.3 million (0.55%) were living with type 1 diabetes.

The study, conducted by the Centers for Disease Control and Prevention (CDC) asked participants a variety of questions regarding being diagnosed with diabetes and what methods were used to manage it. Responses were classified as type 1, type 2, or “other” type of diabetes. There were 182 participants who reported having type 1 diabetes but did not claim to take any type of insulin, so they were categorized as type 2 respondents. Out of the 33,028 participants, 3,519 reported having diabetes, and 211 of those reported having type 1 diabetes. The study also found that T1D was more prevalent in men than women (0.64% vs. 0.46%), and as well as in non-Hispanic whites versus Hispanics (0.67% and 0.22% respectively).

Study authors hope that “knowledge about national prevalence of type 1 and type 2 diabetes might facilitate assessment of the long-term cost-effectiveness of public health interventions and policies aimed at improving diabetes management and help to prioritize national plans for future type-specific health services.”

Though it may seem like a small percentage who have T1D, it is still more than a million people who struggle each day with this disease, and more than a million people who would benefit from advanced research and treatment options. The Diabetes Research Connection seeks to further knowledge, research, and interventions regarding type 1 diabetes as well and supports novel research studies focused on this condition. Early career scientists can receive valuable funding through the DRC to support their research projects. Check out the current studies and support these efforts by visiting http://diabetesresearchconnection.org.

Learn More +

Are Artificial Pancreas Systems Effective in Treating Type 1 Diabetes?

There are many options available for treating type 1 diabetes from regular finger pricks and injections of insulin to continuous glucose monitoring systems to artificial pancreases and more. However, each person must find what works best for them in the management of their disease.

One treatment method that has undergone recent study is the use of artificial pancreas systems. According to researchers led by Eleni Bekiari, MD, Ph.D., at the Clinical Research and Evidence-Based Medicine Unit at the Aristotle University of Thessaloniki in Greece, these systems can provide positive results for some patients in managing their T1D. Throughout a series of 40 studies encompassing 1027 participants, artificial pancreas systems were found to not only be safe but also an effective line of treatment.

The study compared several different factors of single and dual hormone systems but mainly focused on the percentage of time normal glycemic levels were maintained. These results were measured against patients using standard insulin-based treatments. The study found that those individuals using the artificial pancreas systems experienced higher durations of time where their blood sugar levels were in the normoglycemic range, including overnight – 15.15% for artificial pancreas systems versus 9.62% for insulin-based treatment. There was also less deviation between blood sugar levels.

The researchers found that “artificial pancreas systems are an efficacious and safe approach for treating outpatients with type 1 diabetes.” More research and clinical trials are necessary to further explore the benefits and long-term outcomes of these systems. The Diabetes Research Connection is committed to supporting early career scientists in advancing their research and delving more deeply into topics related to the diagnosis, treatment, and management of type 1 diabetes. The DRC provides essential funding for researchers to carry out peer-reviewed, novel research projects. To learn more about current projects and support these efforts, visit http://diabetesresearchconnection.org.

Learn More +

Viruses May Cause T1D and Other Autoimmune Diseases

Viruses are the cause of many health conditions and affect the body in different ways. As scientists learn more about these viruses, they can develop targeted strategies for preventing and treating them. A major breakthrough was recently discovered involving a very common virus known as the Epstein-Barr Virus or EBV.

EBV is most commonly known for causing mononucleosis (mono) or the “kissing disease” since it is often transmitted via saliva. By age 20, more than 90 percent of the population in developed countries will be infected by the disease. This rate spikes in under-developed countries with more than 90 percent of the population being affected by age 2. There is no cure for the virus – it remains in the body for life, though may not have a noticeable impact.

However, researchers have found that the effect it can have at a cellular level may be more significant than previously realized. Scientists from the Cincinnati Children’s Hospital’s Center for Autoimmune Genomics and Etiology have published a study potentially linking EBV to seven diseases, including T1D. One of the Diabetes Research Connection’s own Scientific Review Committee members, Matthias Von Herrath, was an author on an article cited by the study in its research.

Typically, the body responds to viruses by increasing the production of antibodies by B cells. These antibodies then attack and destroy the virus. However, with EBV, the virus actually takes over the B cells and re-programs them using transcription factors. This alters the way that B cells respond and can change their basic function, which may increase the risk of developing other diseases. The scientists have narrowed it down to one factor in particular – the EBNA2 protein.

Transcription factors associated with this protein attach to and change sections of person’s genetic code. Depending on where they attach, it could contribute to different diseases including T1D, lupus, multiple sclerosis, rheumatoid arthritis, celiac disease, and more. Identifying what is happening on a cellular level could help researchers to develop more targeted treatment options and potential cures for these diseases. The study also opens doors for more in-depth research regarding how transcription factors may affect other gene variants and diseases.

These findings are very encouraging in better understanding some of the underlying factors that may contribute to T1D. More research is necessary to explore each disease in particular and the potential impact from EBV and the EBNA2 protein. The Diabetes Research Connection is excited to see where these discoveries may lead moving forward and how it could change the future of T1D treatment. The DRC provides funding to early-career scientists pursuing novel research studies on type 1 diabetes to improve prevention strategies, treatment options, and management techniques as well as potentially find a cure. Learn more about current projects and provide support by visiting http://diabetesresearchconnection.org.

Learn More +

Oxygen Supply May be Key in Supporting Islet Transplantation

One of the strategies scientists have focused on in the treatment of type 1 diabetes is transplanting healthy islet cells into the body to naturally produce insulin and manage blood glucose levels. These cells may be lab-generated or come from a donor. However, a major challenge has been conducting these transplants without reliance on immunosuppressants which can compromise overall patient health and complicate treatment.

In order to overcome this obstacle, researchers have created encapsulation devices to protect transplanted islet cells from attack by the body without using immunosuppressants. But with these devices, the lifespan of cells has been limited, in part due to poor oxygen supply. The devices often limit access to oxygen or restrict diffusion.

A new study has found that surrounding islet cells in an oxygen-permeable membrane and equipping the encapsulation device with an oxygen chamber can provide the necessary oxygen supply to keep cells functional and viable. Scientists experimented with varying levels of islet cell surface density and oxygen partial pressure (pO2).  The chamber allowed oxygen to be diffused throughout the highly concentrated alginate slab of islet cells.

The results showed that an average of 88% of islet cells maintained their viability and supported normoglycemic levels when tested in diabetic rats. Due to the continuous diffusion of oxygen, the chamber needs to be refilled daily through a subcutaneous port. Of the 137 rats in the trial, 66 remained normoglycemic for at least eight weeks. Some remained normoglycemic for up to 238 days, at which point the device was electively removed. Upon explanation, rats experienced hyperglycemia. When given intravenous glucose tolerance tests, results from rats with the implanted device were not significantly different than those of non-diabetic rats.

Researchers are currently exploring opportunities to decrease the size of the device while achieving greater islet density and continued viability. This study demonstrates how technology is advancing to create more options for treating and potentially curing type 1 diabetes with fewer complications and undesirable side effects.

Though not involved with this particular study, the Diabetes Research Connection is committed to supporting novel research for type 1 diabetes in an effort to prevent and cure the disease as well as reduce complications and improve quality of life for those living with type 1 diabetes. Visit us online at http://diabetesresearchconnection.org to learn more about current research projects and provide support for these initiatives.

Learn More +

National Tell A Story Day: A Founder’s Story

At the age of six, I knew something wasn’t quite right. I didn’t have the same energy as all the other kids did that I played with. My mom took me to the doctor and after running a few tests, the doctor says to my mom and me, “David has Type 1 Diabetes and won’t live past the age of 30”. We were devasted. Trying to comprehend and make sense of what my diagnosis actually meant at age 6 was impossible. There were no support systems in place back then. Not for me and not for my family.

It was 1960 and the management of T1D was in the “Stone Age”. I remember having to sharpen my own needles at home with a grinding stone, so I could inject myself with animal insulin that gave me horrible welts, it was extremely painful. To monitor my blood sugar, my mom would drive me to the hospital once a quarter to test through a urine sample.

Today, my blood is tested 288 times a day through a monitor. Those needles that I had to sharpen myself, have been replaced with an insulin pen. And, I proved those doctor’s wrong, I’m now in my 60’s, well past the age of 30. While recalling my journey with this disease, I realized that the time lapse between then and now is 50 years – an entire generation.

When I think about all of the advancements that have been made, how far we have come in 50 years, I’m amazed. In one generation, Genentech discovered how to synthesize human insulin. The accuracy of glucose testing has improved drastically. Blood glucose monitors now allow us to monitor at home. While researchers have not found a cure yet, in their search for one, they have found ways to improve the lives of those of us living with this extremely difficult disease and I for one, am forever grateful.

Imagine if today, the 1.3 million people affected by this disease were still having to inject themselves with animal insulin? This is why funding research is so important and why I founded the Diabetes Research Connection. To offer hope and advancements and one day, a cure.

Find out more about the Diabetes Research Connection (DRC) and how to support our efforts by visiting https://diabetesresearchconnection.org/join-us/

Learn More +

Could Patients with Type 1 Diabetes Benefit from Medical Alert Systems?

Patients living with type 1 diabetes do a whole lot of balancing. Aside from having to always keep their blood sugar and insulin levels in check, they also need to make sure that they strike the perfect balance between the medication they take, the food they eat and the exercises they do. The good news, however, is that it’s becoming a lot easier for patients to keep track of their levels thanks to emerging diabetes technologies. Moreover, companies are getting closer to perfecting closed-loop systems that aim to automate as much of the monitoring and treatment processes as possible so the patient can focus on things that they care about. Does this mean, therefore, that there’s no longer any need for patients to invest in medical alert systems? Well, the short answer is not quite.

Consider the possible complications

While the symptoms of type 1 diabetes are quite manageable, the complications can be a bit trickier. Aside from eye, nerve and kidney damage, it can also cause heart and blood vessel issues, which could lead to heart attacks. Needless to say, whenever a heart attack happens, time is always of the essence. The faster the patient is given proper treatment, the bigger their chances of survival. This is where the ability to quickly contact emergency services comes in. Medical alert systems make it possible for patients to easily call for help even if they are alone or, for some reason, incapacitated.

They’re meant to augment the patient’s existing tools

Again, living with type 1 diabetes requires the patient to keep track and balance a lot of things. This means that a simple change in one thing—like the type of exercises they do or the food they eat—could easily change their body’s overall dynamic. This, of course, could lead to all sorts of unforeseen issues—which is another reason why it’s crucial for patients to have some form of medical alert system in their diabetes toolkits at all times.

Readiness is key

It’s definitely becoming so much easier for patients with type 1 diabetes to live with their condition. With modern tools for monitoring and treatment becoming more and more sophisticated, the risk for serious complications has gone down significantly. This, however, does not mean that it’s okay to be complacent. At the end of the day, medical alert systems still give patients a significantly better fighting chance in case something goes wrong, and that’s definitely not an opportunity anyone should pass on.

Learn More +

What You Need to Know About Hypoglycemia Unawareness

Many people are aware of warning signs that their blood sugar is too low. They experience sweating, shakiness, hunger, or dizziness. They may also feel confused, sleepy, or weak. As a result, they eat or drink something to bring their blood sugar back up. However, some people with diabetes are unaware of the signs of hypoglycemia or low blood sugar – not that they don’t know what the symptoms are, they just don’t experience or perceive them. This can be dangerous to their health and well-being.

There are numerous risk factors for hypoglycemia including:

  • Sleeping: Blood sugar may drop while sleeping and occur frequently enough that it alters their ability to detect symptoms while awake.
  • Time: The longer someone lives with diabetes, the less sensitive they may become to low blood sugar. People who have used insulin for 20 years or more tend to be at greater risk.
  • Age: Older adults may experience cognitive changes that affect their ability to recognize hypoglycemia.
  • Exercise: Rigorous exercise can affect blood sugar levels up to 15 hours later.
  • Alcohol: When the liver is occupied with processing alcohol, it may not be able to release glucose as effectively resulting in hypoglycemia.
  • Prescription Drugs: Certain medications may affect a person’s ability to recognize symptoms of low blood sugar.

However, there are several ways to manage hypoglycemia unawareness and be proactive in keeping blood sugar in check.

  • Testing blood sugar more frequently throughout the day can help individuals to recognize when their blood sugar is getting low so they can treat it early.
  • Using a continuous glucose monitoring system (CGM) or automatic insulin delivery (AID) device can help with tracking blood sugar trends and administering or suspending insulin as necessary. This can help to achieve more stable blood glucose levels and reduce incidences of hypoglycemia.
  • Using long-acting or fast-acting insulin analogs may help as well, especially at night and during meal times.
  • Targeted training on improved insulin usage and how to be proactive in managing blood sugar can reduce risk. Working with a certified diabetes educator can be very beneficial in managing hypoglycemia unawareness.

Effectively managing blood sugar is an essential part of living with type 1 diabetes, but that can be difficult, especially with so many contributing factors and the fact that every person is different. That is what makes the work of the Diabetes Research Connection (DRC) even more important. The DRC provides vital funding for early career scientists to pursue novel research projects geared toward diagnosing, treating, and curing type 1 diabetes, as well as improving quality of life for individuals living with the disease. Their studies have the potential to make a difference in the future of type 1 diabetes care. Find out more about current projects and how to support these efforts by visiting http://diabetesresearchconnection.org.

Learn More +

Examining the Impact of Adding SGLT2 Inhibitors to T1D Treatment

For individuals living with type 1 diabetes, every day consists of checking their blood glucose levels, monitoring what they eat, and taking the appropriate amount of insulin to keep their blood sugar levels stable. However, long-term use of insulin can lead to undesirable dose-dependent side effects such as weight gain and hypoglycemia. Since there is currently no cure for T1D, these effects can be concerning because individuals must continue to take insulin for the foreseeable future.

Looking for a way to curb these effects, a recent study examined the efficacy of adding sodium-glucose cotransporter 2 inhibitors (SGLT2) to treatment for T1D. The medications used for the study were canagliflozin, empagliflozin, sotagliflozin, and dapagliflozin. Four different randomized controlled trials were conducted.

The results showed numerous positive changes when insulin use was combined with one of the four medications. There were statistically significant reductions in A1c levels as well as weight gain. In addition, the amount of insulin needed also decreased. While each medication led to different results, they all had similar effects on reducing these issues. Furthermore, the addition of these medications to treatment did not lead to any significant changes in risk associated with hypoglycemia, adverse events, or episodes of DKA.

This was a small study, so more extensive testing is necessary to evaluate the effects of SGLT2 inhibitors on T1D treatment on a larger scale. However, these initial tests show promising results and support for conducting more thorough investigations.

It is these types of forward-thinking research studies aimed at improving treatment and quality life for individuals living with T1D that the Diabetes Research Connection (DRC) is passionate about supporting. Though not involved in this study, the DRC has supported dozens of early career scientists by providing funding for novel research. These studies may lead to new breakthroughs or areas that can continue to be explored more deeply. To learn more about current projects and support these efforts, visit http://diabetesresearchconnection.org.

Learn More +

Could Real-Time Continuous Glucose Monitoring Reduce Incidences of Hypoglycemia?

Managing type 1 diabetes can be tricky. Many people rely on self-monitoring throughout the day by periodically testing their blood sugar and administering the proper dose of insulin as needed. Individuals with T1D often inject themselves with insulin multiple times per day. However, food, beverages, physical activity, illness, and other factors can all impact blood sugar levels making them more difficult to effectively manage.

But with advances in technology, continuous glucose monitoring (CGM) devices are now available to help those with T1D track and manage their blood sugar. These devices have a tiny sensor that is inserted under the skin which automatically measures blood glucose levels and transmits the information to a monitoring device. The system can also alert when blood sugar becomes too high or falls below a specified level allowing individuals to respond accordingly.

A recent study conducted across 12 diabetes centers in Germany aimed to determine whether the use of real-time CGM (rtCGM) systems could reduce the number and severity of incidences of hypoglycemia in patients with T1D who had a history of impaired hypoglycemia awareness or severe hypoglycemia within the previous 12 months. The study involved 149 participants, and 141 successfully completed the trial in its entirety.

All participants wore a masked rtCGM system for 28 days before being randomly assigned to one of two groups: the first group wore an unmasked rtCGM system for the next 26 weeks, and the second group was a control group that self-monitored blood glucose levels during this time. The results of the study found that the group that wore the rtCGM system had a 72% decrease in the number of hypoglycemic events (10.8 to 3.5 per 28 days), while the control group saw no significant reduction (14.4 to 13.7 per 28 days). Therefore, the rtCGM system was able to reduce the number of hypoglycemic events that occurred in individuals with a history of severe hypoglycemia or impaired hypoglycemia awareness.

The Diabetes Research Connection (DRC) is encouraged to see the difference these types of devices can make in the lives of individuals living with type 1 diabetes. It is through innovative research studies and technology development that these advances are possible. The DRC supports early career scientists in pursuing novel research geared toward diagnosing, treating, or curing T1D, as well as improving quality of life for those living with the disease. Learn more about the incredible projects that are taking place and find out how you can be a part of supporting these initiatives by visiting http://diabetesresearchconnection.org.

Learn More +

Key Control Factor in Regulating Blood Glucose Level Identified

Despite years of research, type 1 diabetes remains a complex disease without a definitive cure. However, researchers continue to make new discoveries in how the disease develops and impacts the body. This allows for more targeted approaches to treatment. One such recent discovery is pinpointing the mechanism that is believed to be primarily responsible for controlling blood glucose levels in humans.

Researchers at the Karolinska Institutet in Sweden and the University of Miami Miller School of Medicine in Florida have released a study that identifies pancreatic islets as the main control function. Though glucose homeostasis involves the liver, hypothalamus, and pancreas, it is the pancreatic islets which release hormones and insulin that appear to have the most influence in regulation.

Different animals have their own set point of what is a normal blood glucose range, including humans. The researchers transplanted pancreatic islets from different animals into mice with and without diabetes. According to Principal Investigator Per-Olof Berggren, a professor at the Rolf Luft Research Centre for Diabetes and Endocrinology at Karolinska Institutet’s Department of Molecular Medicine and Surgery, “We found that the engrafted islets transferred the glycemic levels of the donor species. This indicates that the pancreatic islets have the overall responsibility for maintaining normal blood glucose levels, making them the ‘glucostat’ in our bodies.”

Human pancreatic islets contain cells that release the hormone glucagon which regulates insulin-producing cells. This is an important discovery when it comes to developing treatment approaches because scientists may find that including these hormone-producing cells in addition to insulin-producing cells when creating artificial islets could be beneficial in better-regulating blood glucose levels.

It is these types of discoveries that enable researchers to develop more advanced and effective options for treating and potentially curing type 1 diabetes. The Diabetes Research Connection supports early career scientists in pursuing novel research projects aimed at diagnosing and treating type 1 diabetes as well as improving quality of life for individuals living with the disease. To learn more about their innovative research and contribute to its advancement, visit http://diabetesresearchconnection.org.

Learn More +

Improving PD-L1 Levels to Treat Type 1 Diabetes

A major obstacle that researchers face in treating type 1 diabetes (T1D) is the body’s own immune system. In individuals with T1D, the immune system destroys insulin-producing beta cells whether naturally occurring or introduced through novel therapeutic approaches. The use of anti-rejection drugs to protect newly injected or created cells can be hard to the body and contribute to undesirable side effects.

However, researchers at Boston Children’s Hospital are studying a new approach to treating – and potentially curing – T1D. They found that in individuals with T1D have a deficiency of PD-L1, a protein that helps prevent autoimmune reactions by binding to PD-1 receptors. By treating blood stem cells using gene therapy or a cocktail of small molecules, they were able to increase PD-L1 production. In turn, this helped to reverse hyperglycemia and better manage blood sugar levels.

In an experiment using mice with diabetes, “almost all the mice were cured of diabetes in the short term, and one-third maintained normal blood sugar levels for the duration of their lives.” In addition, the risk of adverse events is practically eliminated since the therapy uses the patients’ own cells. Though immunotherapies have been used before in an effort to treat T1D, they have not been targeted specifically for diabetes, whereas in this study, they are.

The research team has already met with the U.S. Food and Drug Administration for a pre-investigational new drug meeting regarding the combination of small-molecules used during the mouse trials in order to begin the approval process for human clinical trials.

This is an exciting step toward advancing treatment options for type 1 diabetes and potentially reversing the disease. More research is needed to determine how long the effects last and how often treatment would be needed.

The Diabetes Research Connection (DRC) is interested to see how the study progresses in the future and what it could mean for individuals living with type 1 diabetes. Though not involved with this particular project, the DRC supports early career scientists in pursuing novel research studies geared toward preventing, treating, and curing T1D, as well as improving quality of life for those living with the disease. Learn more about these researchers and their projects by visiting http://diabetesresearchconnection.org.

Learn More +

Exploring Beta Cell Regeneration in Treating Type 1 Diabetes

In individuals with type 1 diabetes (T1D), the body’s immune system mistakenly destroys insulin-producing beta cells necessary for managing blood sugar. Instead, patients must constantly monitor their own blood glucose levels and administer the proper dosage of insulin as necessary. In individuals without T1D, the pancreas does this automatically.

Some of the challenges that researchers have faced in trying to treat or cure T1D through cellular means is that the body may still reject these cells, there may be a shortage of donor cells, or the process of creating necessary beta cells can be complex. However, researchers at the Diabetes Research Institute at the University of Miami Miller School of Medicine may have found an effective way of using the body’s existing cell supply to generate insulin-producing beta cells.

The researchers identified the exact location in the body of progenitor cells with the ability to develop into beta cells. When stimulated by bone morphogenetic protein 7 (BMP-7), a naturally occurring growth factor, the pancreatic cells differentiated into the necessary beta cells. This discovery could lead to a significant supply of new beta cells within patients’ own bodies, eliminating the need for donor cells and curbing other immune-related challenges of treatment.

This process still requires more in-depth study, but it could lead the way to new regenerative medicine strategies that stimulate insulin production more naturally. The researchers are currently exploring options to reduce the need for lifelong anti-rejection drugs by enhancing immune tolerance of the newly created cells.

This study is another step toward advancing the treatment of T1D and providing patients with more options for care. The more scientists learn about the causes and effects of T1D, the more they can target approaches to treatment.

The Diabetes Research Connection (DRC) stays abreast of the latest developments in the field and encourages novel research projects by early-career scientists focused on T1D. The DRC raises funds through contributions by individuals, organizations, and foundations to support the advancement of these studies. Find out how you can get involved by visiting http://diabetesresearchconnection.org.

Learn More +

Could Implantable Glucose Sensors be a Viable Option for Monitoring Blood Sugar?

Diabetes management has come a long way over the years. Some people have transitioned away from constant finger pricks and begun using continuous glucose monitoring (CGM) systems to track their blood sugar and alert them to episodes of hyperglycemia or hypoglycemia. However, not everyone has the same level of adherence to using this technology, so results can be inconsistent.

Researchers from Diablo Clinical Research recently conducted a study on the use of implantable, subcutaneous continuous glucose sensors for diabetes management. A small sensor was placed under the skin, and then a transmitter was positioned over top providing wireless power and transmission of data to a mobile app. The transmitter also vibrated to alert users of episodes of hyper- or hypoglycemia in addition to alerts being sent to the app.

There were 90 adults with type 1 and type 2 diabetes who participated in the nonrandomized, prospective, masked, single-arm study which lasted for 90 days. Sixty-one of the participants had type 1 diabetes. Individuals underwent accuracy assessment visits on days 1, 30, 60, and 90 to compare results of the implantable sensor versus a bedside glucose analyzer. In addition, some participants also partook in hyperglycemia and hypoglycemia challenges on days 30, 60, and 90. There were only eight participants who did not complete the study, and 12 reports of mild adverse events and two moderate adverse events.

Following the study, the results showed “more than 90% of continuous glucose monitoring system readings within 20% of reference values.” Furthermore, “the system correctly identified 93% of hypoglycemic events and 96% of hyperglycemic events by the reference glucose reader.” The implantable CGM system used was Eversense by Senseonics.

Additional clinical studies are necessary to further evaluate the safety and accuracy of the system and expand potential use to pediatric patients as well. However, preliminary results show high levels of safety and accuracy in this small study.

This is an exciting step toward providing individuals with T1D another option for managing diabetes allowing them to measure blood sugar levels more consistently and with less intervention. The Diabetes Research Connection (DRC) is interested to see how this study advances moving forward and what it may mean for diabetes management in the future. The DRC raises funds for early career scientists to perform peer-reviewed, novel research designed to prevent and cure type 1 diabetes, minimize its complications, and improve quality of life for those living with the disease. To learn more and support these efforts, visit http://diabetesresearchconnection.org.

Learn More +

Could Viruses Play a Role in the Development of Type 1 Diabetes?

While researchers know that type 1 diabetes involves the destruction of insulin-producing beta cells or lack of production of insulin, they are still not clear on exactly what causes type 1 diabetes to develop. A great deal of time has been devoted to studying genetics and the role it may play in T1D risk. Now scientists are exploring a different avenue – the influence of viruses on diabetes risk.

A recent study led by Professor Ronald Kahn, chief academic officer at Joslin Diabetes Center, identified four viruses that can produce insulin-like hormones. These viruses were found to “produce peptides that are similar in whole or in part to 16 human hormones and regulatory proteins.” While these viruses are found in fish and amphibians, not humans, eating fish may expose the human body to the viruses and therefore have an effect.

Scientists synthesized these peptides and conducted experiments on mice and human cells to determine how they would respond. The viral insulin-like peptides (VILPs) acted like hormones, attached to human insulin receptors, and stimulated the same signaling pathways. In addition, mice were found to have lower levels of blood glucose after being exposed to the VILPs.

According to Kahn, these research findings could lead to new studies regarding type 1 diabetes and autoimmunity. The insulin-like hormones “could be an environmental trigger to start the autoimmune reaction in type 1 diabetes.” However, there is the possibility that they could work as a protective factor as well by desensitizing the immune response.

There are more than 300,000 viruses carried by mammals, but only about 7,500 have been sequenced so far, so there is the possibility that other viruses exist that may affect human cells and T1D risk as well. This study is just the start of understanding the role of microbes in human disease according to Dr. Emrah Altindis who also works at the Joslin Diabetes Center.

The depth and breadth of understanding regarding type 1 diabetes and various aspects of the disease is expanding every day. The Diabetes Research Connection is committed to supporting peer-reviewed, novel research studies that aim to improve diagnosis, treatment, and quality of life for individuals living with T1D.  Through donations from individuals, companies, and foundations, the DRC provides funding to early career scientists to pursue innovative projects. Learn more about current projects and how to support these efforts by visiting http://diabetesresearchconnection.org.

Learn More +

42 Factors That Affect Blood Glucose

Adam Brown with diaTribe put together a comprehensive list of 42, yes you read that right, 42 factors that affect blood glucose in Type 1 Diabetes. In his article, Adam states “I know what you’re thinking – 42 factors that affect blood glucose? Are you kidding?!”

“Yes, it is indeed daunting, but I also hope it’s a reminder of what each of us takes on daily: A LOT! Plus, this list reveals many levers we can pull when trying to improve.”

To learn more about this AMAZING list and organization, click here.

 

 

Learn More +

What is Up-and-Coming in Diabetes Technology?

A new year is underway, and with that comes the emergence of advances in diabetes technology. Companies like Tandem, Dexcom, Medtronic, Insulet, and Senseonics are continuing to move forward with projects that have been in the works for several years, as well as new ones. They are constantly striving to improve how diabetes is managed and to enhance the quality of life for those living with the disease.

Here are just a few of the technology changes in the works:

Closed loop systems. Many companies are still working to refine these processes. It is difficult to create an effective system that requires no user interaction, but they are getting closer. Currently, they are focused on reducing the amount of user input necessary and turning to sensor technology to measure and track blood glucose levels, automatically dose according to individual needs, and predict glucose levels. No fully closed loop systems are expected to be released in 2018, however.

Smartwatch and smartphone compatibility. Many people nowadays own smartphones and smartwatches. Companies are leveraging these connections to bring glucose monitoring right to people’s fingertips. With improved sensors and Bluetooth technology, data can be delivered directly to these devices through apps that allow for better tracking and monitoring of glucose levels. Users would also have the option of sharing this data with others, such as healthcare providers. There are a variety of apps in development with features to improve diabetes management.

Improved sensors. Speaking of sensors, they’re changing too. Industry leaders are looking to make sensors smaller yet more effective and accurate. They are also trying to extend the length of wear and reduce the number of daily calibrations needed. In turn, this would allow individuals more freedom and require less interaction with these systems while still managing blood sugar.

Increased FDA approval. There are some devices and technologies that are approved internationally but are not yet available in the United States. Or, approvals in the United States are stricter. International companies are looking to expand the availability of certain products in the U.S. and ensure that their diabetes care technology meets required standards.

Overall, there are numerous collaborations occurring between companies within the diabetes vertical that could have a positive impact on how the disease in managed moving forward. Companies are working together to bring about more advanced technology and monitoring systems that will make it easier for individuals to track not only their glucose levels, but also insulin use, meals, activity, and other factors that impact their diabetes care – and share it with their healthcare providers.

The Diabetes Research Connection is excited to learn more about these advancements in the months to come and see how diabetes care is changing for the future. The organization proudly supports novel research projects by early-career scientists and provides up to $50,000 in funding for studies. Learn more about current projects and how to support these initiatives by visiting http://diabetesresearchconnection.org.

Learn More +

Brain Differences May Impact Ability to Recognize Low Blood Sugar

Healthy adults can typically recognize when their blood sugar may be becoming too low. It triggers physical symptoms such as dizziness, sweating, weakness, and rapid heartbeat, just to name a few. Plus, their body responds by producing glucose and initiating the brain to signal for food. However, in individuals with type 1 diabetes, the brain does not always respond in this way.

A recent study found that the areas of the brain activated by low blood sugar in adults without diabetes are not the same as those in adults with type 1 diabetes. In brain scans of non-diabetic adults, areas associated with reward, motivation, and decision making showed changes during brain scans. However, only half of the individuals with T1D experienced similar changes, and only in one area of the brain – the area associated with attention – and the other half experienced no changes. Their brain showed no noticeable response to having low blood sugar, which is why individuals may miss cues that others would typically pick up on.

According to Janice Hwang, M.D., assistant professor of medicine and first author on the study, “There is a progressive loss of coordinated brain response to low blood sugar as you go from healthy adult to aware to unaware. The first areas of the brain to go are associated with feeding behavior.” The researchers are hoping that these findings will lead to more effective ways of restoring low blood sugar awareness in individuals with T1D who have lost this awareness.

It is these types of discoveries that help to improve understanding of how T1D affects the brain and body and allows researchers to develop more effective ways of treating and managing the condition. The Diabetes Research Connection supports early career scientists striving to advance research regarding the treatment, prevention, diagnosis, and management of T1D. Researchers can receive up to $50,000 in funding to apply toward their project. To learn more or support these efforts, visit http://diabetesresearchconnection.org.

Learn More +

DRC-Funded Scientist Creates New Insulin-Producing Cells to Fight Type 1 Diabetes

Thanks in part to funding from the Diabetes Research Connection (DRC), Dr. Kristin Mussar was able to conduct an in-depth study regarding how to stimulate the body’s own cells to create new insulin-producing cells that may help treat type 1 diabetes (T1D). In individuals with T1D, the immune system attacks insulin-producing cells, destroying them and leaving the body unable to effectively regulate blood sugar.

The human body is filled with myeloid cells that all differentiate to help grow, maintain, and repair various organs. When these cells are depleted, it impacts organ health. For instance, lack of insulin-producing cells results in diabetes. However, Dr. Mussar and her team discovered that there is a population of macrophages – white blood cells that recirculate throughout the body constantly monitoring the health status of all tissues – that instruct insulin-producing cells to grow in the perinatal stage of pancreas development. During this period of prolific growth, enough insulin-producing cells are created to support glucose homeostasis throughout one’s life.

Dr. Mussar found that there is a special population of these cells that act as cargos of potent growth factors for the insulin-producing cells in the pancreas. If these cells are prevented from entering the pancreas, the growth of insulin-producing cells is arrested and diabetes ensues. This lack of cell growth, as well as cell destruction, are issues that researchers have been trying to remedy through various strategies for treating T1D.

One avenue of treatment that is being explored is finding ways to use the body’s own cells and processes to support insulin production. Current challenges in treatment include the constant monitoring and accurate dosing of insulin, as well as the use of immunosuppressants or other medications to prevent the body from destroying modified cells or specialized therapies. Using the body’s own cells can help reduce risk of immune attack or rejection.

To this effect, Dr. Mussar’s research revealed that there are precursors to these special macrophages that exist within the bone marrow of adults. When these precursors are injected into the blood stream, they are able to signal growth of insulin-producing cells. This discovery raises hopes that, by dispatching these pro-regenerative cells from the bone marrow to injured pancreatic islets, it may be possible to enhance regeneration of insulin-producing cells in individuals with type 1 diabetes. This may in turn help to stabilize blood sugar naturally using the body’s own cells.

The Diabetes Research Connection is proud to have played a role in making Dr. Mussar’s research possible by providing funding that enabled her to continue moving forward with her project and eventually get the results published in the Journal of Clinical Investigation.

Learn More +

Could Reprogramming Cells Help Treat Type 1 Diabetes?

More than 300 million people around the world are living with diabetes. Currently, there is no cure, but scientists are continually researching and testing different methods for treating and managing this disease. One of the major obstacles faced in treating type 1 diabetes is that the body’s immune system attacks and destroys insulin-producing beta cells, whether these cells are naturally occurring or introduced through medical treatment.

Some researchers are looking at ways to reprogram the body’s own cells to function as insulin-producing cells to help better control blood sugar. The human pancreas contains small niches where hormone-making cells reside. Within these niches, two different cells predominate: alpha cells, which make glucagon, and beta cells, which make insulin. In individuals with type 1 diabetes, insulin-producing cells are destroyed, but glucagon cells are not.

Scientists developed a method using viruses as carriers to deliver two genes that are present in insulin but glucagon cells to the glucagon cells allowing the cells to be able to produce insulin. Glucagon cells are a good option for this process because they are similar to insulin cells and appear in abundance in islets within the pancreas already. A decrease in these cells as they were reprogrammed did not appear to affect glucose metabolism.

These experiments have been performed in NOD mice, which are mice that develop diabetes very close to human diabetes. Following the experiment, the diabetes disease appeared to have resolved in the diabetic NOD mice thanks to the new source of cells making insulin in their pancreas. However, human application of this technique will take time since targeting specific cells is complicated, and the use of viral elements creates side effects that need to be resolved.

It is this type of research and these experiments that lead to breakthroughs in the treatment, management, prevention, and improvement in the quality of life for individuals living with type 1 diabetes. Though not involved in this particular study, the Diabetes Research Connection supports early-career scientists through funding for novel research on type 1 diabetes. Learn more about current projects and support their advancement by visiting http://diabetesresearchconnection.org.

Learn More +

Is a New Transplant Site the Key to a Type 1 Diabetes Cure?

The Diabetes Research Connection is proud to partner with Beyond Type 1 to accelerate the most promising efforts for a cure for Type 1 diabetes. This is one of many projects we’re excited to partner on. Gifts start at $1 and 100% of your funds designated for research go directly to the lab. To date, $8,002 of a necessary $50,000 has been raised to move forward with this idea.

Have you heard about the handful of Diabetes Research Institute (DRI) patients that went without insulin for 10 years after cell replacement therapy? Their results showed that we can restore insulin production in those with Type 1 diabetes and that a biological cure is possible.

This treatment is not available (yet) to the millions with diabetes. While it was effective for some and improved their quality of life, the issue of cell survival and need for immunosuppressants post-transplant remains. Can a new location for the islet cell BioHub or “mini-organ” remedy these issues? The liver, the site used previously, has an adequate blood supply and is an easy-to-access location; however, it is the body’s filter for toxins, so the cells are exposed to waste, which decreases their longevity.

Dr. David Baidal at DRI believes that there may be a better location for cell replacement therapy: the omentum, a layer of fatty tissue that covers the organs in the lower abdomen. Like the liver, it’s close to the surface and is also highly vascularized. The big difference is it isn’t surrounded by waste and has an even larger surface area for scientists to work with.
DRI says there have been “encouraging preliminary results in animal models have demonstrated that islets in the omentum can engraft (become lodged in the tissue, get their own vessels and start producing insulin) and improve blood glucose control.”

With approval from the FDA, a new clinical trial is now underway in humans.

The Clinical Trail

The DRI BioHub is a bioengineered mini-organ designed to mimic the pancreas. “The islets are transplanted within a fully-resorbable (biodegradable) biologic scaffold consisting of the patient’s plasma (the liquid part of the blood that does not contain cells) and human thrombin, a clotting enzyme commonly used in surgical procedures,” explains DRC.

“The biologic scaffold will serve as a platform that adheres to the omentum and holds the islets in place. The patients in this clinical trial will require the same immunosuppressive (anti-rejection) drug regimen as used in islet transplants within the liver. However, our goal at the DRI is to eliminate the need for these drugs. The development of the DRI BioHub, together with several other areas of research strategies underway at the Institute, are aimed at overcoming challenges of the immune system.”

You can fund this project directly! Researchers have raised $8,000 of a necessary $50,000 to move forward with this idea. Let’s make it happen.

Learn More +

Scientists Delve More Deeply into Genetics and T1D

Type 1 diabetes is a complex disease. Scientists know that it is not caused by a single gene – there are multiple genes involved, and the differences may vary from person to person. In fact, a recent study by a TEDDY (The Environmental Determinants of Diabetes in the Young) team has identified six gene regions that may play a role in the development of type 1 diabetes (T1D).

Researchers have already found that there are two key antibodies that are present in individuals with the disease, but one typically appears before the other, and just because a person has one or both of these antibodies does not necessarily mean they will develop diabetes. These two antibodies – one that affects insulin and one that affects the enzyme that regulates insulin-producing beta cells – account for two major subtypes of the disease, and there may be more yet to be discovered.

This recent TEDDY study focused on identifying non-HLA genes because these genes are not directly linked to the immune system. Because the immune system attacks insulin-producing beta cells, HLA genes are already a prime focus, so the researchers wanted to look at a different area. The more genes that can be identified as potentially playing a role in type 1 diabetes risk, the more effective and accurate screening measures can be.

The TEDDY initiative looks at both genetic and environmental factors in diabetes to determine how they may impact one another. The international initiative is following nearly 9,000 children for 15 years. This particular study involved 5,806 Caucasian TEDDY participants due to genetic differences between ethnic groups.

In addition to examining non-HLA genes, the researchers also looked at 176,586 single nucleotide polymorphisms (SNPs), or single variations in the building blocks of an individual’s DNA. They sought to determine whether type 1 diabetes is associated with certain SNPs. They broke this down even further to look at differences in SNPs in individuals who have T1D, and those who have islet cell autoantibodies (IA). While IA is considered a risk factor, it does not always develop into full-blown T1D.

This is the first time that this type of longitudinal study has been used in conjunction with gene identification and the development of diabetes. Scientists are hopeful that by better understanding the genetic changes that occur with T1D, they can improve detection of risk factors and potentially develop new strategies for preventing or treating the disease. According to the National Institutes of Health, 1 in 300 people in the United States are affected by type 1 diabetes by age 18.

Supporting novel research that aims to prevent and cure type 1 diabetes, or improve quality of life and reduce complications for individuals living with the disease, is the aim of the Diabetes Research Connection (DRC). Though not associated with this particular project, the DRC provides funding for early career scientists to move forward with research studies on T1D and improve understanding of the disease. To learn more, visit http://diabetesresearchconnection.org.

Learn More +

Single Strand of Islet Cells Could Change Diabetes Management

For patients with type 1 diabetes, daily insulin injections become a way of life. Since the pancreas either does not produce enough or any insulin, and the body’s immune system destroys insulin-producing beta cells, the body is unable to regulate blood sugar on its own. There are many studies underway examining potential treatments that would eliminate the need for regular insulin injections.

One such study is being conducted by researchers at Cornell University in collaboration with Novo Nordisk and the University of Michigan Medical School. The researchers have developed an implant that would enable the production of insulin while warding off an attack from the immune system. The device is a single thread covered with “hundreds of thousands of islet cells” that is then fully encased in hydrogel. The hydrogel not only keeps the islets in place, it also protects them from being damaged.

The thread does not adhere to tissue within the body, so it can be easily removed and replaced once the islet cells reach the end of their lifespan. Current research shows they could potentially last anywhere from several months up to two years. This device has shown promising results when tested in both mice and dogs. No testing on humans has taken place yet, which would need to be done before the technology is potentially approved for use.

Technology continues to advance when it comes to treating and managing type 1 diabetes, and this is very encouraging. The Diabetes Research Connection strives to support early career scientists in conducting novel research studies focused on type 1 diabetes in order to improve the quality of life for individuals living with the disease and enhance diagnosis, prevention, and treatment efforts. To learn more, visit http://diabetesresearchconnection.org.

Learn More +

Patents Approved for Small Molecule Therapies for Type 1 Diabetes

There are numerous approaches to managing, treating, and potentially curing type 1 diabetes (T1D). Some focus on replenishing or protecting insulin-producing beta cells, some involve the development of devices that simulate similar functions, and still, others seek to zero in on issues related to the development of T1D.

ImmunoMolecular Therapeutics recently received patents for two of its small molecule therapies that can be used in the treatment of T1D. These patents provide exclusive rights to the use of methyldopa and D-methyldopa (D-MDOPA) as part of immunotherapy treatment. According to the company, “The lead candidate drug [D-MDOPA] is an oral small molecule that starves the autoimmune process in type 1 diabetes by blocking DQ8 on specific immune cells. Our goal is to preserve pancreatic beta cell function and maintain normal insulin production in at-risk and early-stage patients with type 1 diabetes.” By blocking DQ8, the immune system will not attack insulin-producing beta cells, therefore, preserving their function.

Immunotherapy is one option when it comes to treating T1D. The Diabetes Research Connection supports early career scientists in moving forward with novel research for a variety of methods used in the treatment and prevention of the disease. To learn more about current projects and support their advancement, visit http://diabetesresearchconnection.org.

Learn More +

2017 Year in Review

This past year has been a year of impact at the Diabetes Research Connection. With the generosity of our supporters, we funded five innovative, peer-reviewed type 1 diabetes (T1D) projects, bringing the total to 12. Our sponsored early-career scientists developed data to show beginnings of proof of principle concepts that in turn precipitated substantial additional grants. We also had two researchers publish their work in diabetes journals.

We’re committed to keeping our community updated on all projects and DRC happenings, so we wanted to take time to share all the amazing things that happened in 2017.

In January, Jeffrey Serrill, Ph.D. at the City of Hope in Los Angeles started off the year with his project, Determining How Other Cells (Non-Beta) In The Pancreas Affect Diabetes. This is the 13th research project to launch on our website.

In March, we funded our 8th project; Peter Thompson, Ph.D., at the University of California, San Francisco, Regrowth of Beta Cells with Small Molecule Therapy.

In April, we funded our 9th and 10th research projects; Joseph Lancman, Ph.D., at Sanford Burnham Prebys Medical Discovery Institute, Replacement Beta-Cells From An Unexpected Source and Agata Jurcyzk, Ph.D., of the University of Massachusetts Medical School, What is the Connection Between T1D and Depression?

In May, our 11th project was funded; Gene-Specific Models and Therapies for Type 1 Diabetes, research being conducted by Jeremy Racine, Ph.D. of The Jackson Laboratory.

In June, we partnered with the diaTribe Foundation for the 2nd annual Brews & Blood Sugar event. More than 100 people joined us to sample beer from one of San Diego’s premier breweries, to learn how different varieties of beer affect blood sugar and support efforts to find solutions for those with diabetes.

In July, DRC funding precipitated a $1M grant for one of our researchers and his lab. Joseph Lancman, Ph.D., at Sanford Burnham Prebys Medical Discovery Institute was awarded $47,000 in funding by DRC to conduct his research project titled, Replacement Beta-Cells From An Unexpected Source. The results from this project enabled his lab to secure a $1M grant from the prestigious W.M. Keck Foundation. In the researcher’s own words, “The Diabetes Research Connection, like the Keck Foundation, plays a critical role in biomedical science by supporting innovative projects that most other funding sources consider high-risk. However, these high-risk projects have high-reward potential, essential for stemming next-generation technologies.”

Also in July, DRC spoke at the Children with Diabetes Friends for Life conference in Orlando, Florida. CC King, Ph.D., Todd Brusko, Ph.D., and David Baidal, M.D. presented on the current trends in T1D research and provided an update on contributions made by early-career scientists.

August was a busy month for us at DRC. Two of our researchers were published for their work in diabetes research. Support by DRC enabled Wendy Yang, Ph.D., to contribute to a major study published in Cell Report. In this study, the investigators discovered that alpha-catenin, a protein that regulates cell-cell interactions and communication is a potent regulator of pancreatic islet cell development. Click here to read the full article. In addition, Kristin Mussar, Ph.D., completed her project and found evidence that macrophages, a type of white cell usually associated with infection, also play an important role in the development of the islets, where insulin is made, just before and immediately after birth. The published report shows how macrophages help islets grow indicating that selected agents may activate the cascade of proteins enhancing islet growth, an important contribution for future treatments in T1D.

Also in August, we funded our 12th project; Yo Suzuki, Ph.D., at the J. Craig Venter Institute, Needles be Gone for Type One Diabetes Patients.

In September, we launched our 14th project; David Baidal, M.D., at the Diabetes Research Institute, The Omentum as an Alternative Islet Transplant Site.

In October, we launched our 15th and 16th research projects; Ningwen Tai, Ph.D., Yale University Diabetes Center, A Bacteria in the Gut May Predict Type 1 Diabetes and Jane Kim, M.D., at Rady Children’s Hospital and the University of California, San Diego, What Type of Type 1 Diabetes Does Your Child Have?

In November and in recognition of World Diabetes Day, we were honored to have Dr. Jane Kim’s project featured by Good Morning San Diego.

In December, we launched our 17th project; Tamara Oser, M.D., Penn State College of Medicine, Using Technology to Improve Diabetes Self-Management. We also had the world record holder for being the youngest person to cross America on foot visit us in San Diego on Thursday, December 14, 2017. Noah (11yrs old) started in Key West, FL on January 1, 2017, and finished on Saturday, December 9, 2017, in Blaine, WA, approximately 4,230 miles. Noah was diagnosed with type 1 diabetes (T1D) when he was 16 months old and has lived with insulin shots most of his life. We were grateful to share his story on Good Morning San Diego.

This past year was important for moving research forward and adding to the field of diabetes. We could not do what we do without the continued support of our community.

 

 

 

 

Learn More +
Kristin-Mussar in a labcoat

Next-Generation Scientist Publishes Research Findings

One of DRC’s funded researchers, Kristin Mussar, Ph.D., completed her project and published findings in the Journal of Clinical Investigation.  Kristin’s research project set out to create new insulin-producing cells to repair a damaged pancreas. Her research found evidence that macrophages, a type of white cell that is usually associated with infections, also plays an important role in the development of islets, where insulin is made, just before and immediately after birth. The published report shows how macrophages help the islets grow indicating that selected agents may activate the cascade of proteins enhancing islet growth, an important contribution for future treatments in type 1 diabetes. Click here to read the full report.

Learn More +

Stem-Cell Derived Therapy for Type 1 Diabetes Funded to Move Forward

Scientists have been exploring many options for treating and potentially curing type 1 diabetes (T1D) in recent years. From examining the role of gut cells to creating an artificial pancreas, the studies have been diverse. Some challenges that they have faced are undesirable side effects, short-term effects, the need for immune suppression, and continued destruction of insulin-producing cells.

However, Semma Therapeutics recently secured $114 million in Series B financing to move forward with a program using encapsulated stem cell-derived islets to treat and potentially cure T1D. This financing was made possible through investments from multiple partners and investors. It will be used to advance the stem-cell derived therapy through clinical proof-of-concept in patients.

The technology and processes used by Semma have the ability to create billions of insulin-producing beta cells that perform in the same way these cells do when naturally produced by the body. However, these cells are combined with an innovative cell delivery technology that protects them from being destroyed by the body’s immune system. Ideally, this would enable them to continue regulating blood sugar while reducing the risk of complications and the need for constant blood sugar monitoring and insulin injections.

According to Semma Therapeutics Founder and Board Observer Douglas Melton, “Semma’s scientists have very effectively dedicated themselves to systems that reliably generate cells indistinguishable from human pancreatic beta cells and to the invention of novel devices that are immunologically protective and surgically practical. We’re very encouraged and excited about the potential this program has for diabetic patients and their families.”

The Diabetes Research Connection is eager to see how this program could impact the lives of those living with T1D, as well as the progress and direction of treatment options moving forward. The Diabetes Research Connection is not connected to this project, but raises funds to support early career scientists in conducting novel research in preventing, treating, and curing T1D, as well as improving quality of life for individuals with the disease. To learn more, visit http://diabetesresearchconnection.org.

Learn More +

How Technology is Changing Diabetes Care and Treatment

Despite years of research and clinical trials, no cure for type 1 diabetes exists yet. However, how the disease is managed and treated has changed, leading to vast improvements in quality of life. Many individuals are better able to track their blood sugar and administer insulin more effectively to reduce instances of hypoglycemia and other complications. A recent article explores how technology has impacted current research for type 1 diabetes.

For years, researchers were focused on developing immunotherapies to try to treat T1D at its source. With this type of diabetes, the immune system attacks and destroys insulin-producing beta cells from the pancreas. The goal was to either reverse the disease or stop it from developing in the first place. Today, researchers have shifted their focus. Instead of trying to figure out how to prevent diabetes, some scientists are working to improve how patients live with the disease. This has involved major leaps in medicine including attempts at developing an artificial pancreas system that would function similar to the body’s own pancreas to regulate blood sugar.

Over the years, researchers have experimented with a variety of immune therapies trying to find an approach that could treat diabetes without a host of unpleasant side effects. This has been a difficult process and not yet produced a significantly effective treatment. However, there have continued to be technological advances that have improved how patients manage diabetes. It is easier than ever to quickly test blood sugar, and some patients even have continuous glucose monitors that send information to their smartphone and alert to low blood sugar. There have also been many improvements in more accurate dosing and administering insulin.

In 2016, scientists made progress toward creating an “artificial pancreas” system. It combined a continuous glucose monitor and insulin pump to modulate insulin delivery based on data over time. It is not yet fully automated, however, because patients still must calculate their insulin dosage during meal times. But it did have benefits for reducing hypoglycemia overnight. This technology has opened doors for others to begin testing different approaches for creating a fully automated insulin delivery artificial pancreas system. While not a “cure” for type 1 diabetes, it could help improve management of the disease while decreasing the burden on patients.

There is still a great deal of research and work to be done before this type of treatment comes to fruition. And once it exists, there is no guarantee that every patient would choose to use it, just like not all patients choose to have continuous glucose monitors. But it would be another option that exists and could potentially have a significant impact on people’s lives.

The Diabetes Research Connection recognizes the life-changing impact that a T1D diagnosis has, and supports early career scientists in moving forward with novel research projects focused on preventing, curing, or managing type 1 diabetes. Through donations from individuals, corporations, and foundations, research funding is made possible. To learn more about current projects or make a donation, visit http://diabetesresearchconnection.org.

Learn More +

Could There be More than two Types of Diabetes?

and affects their body. Typically type 1 diabetes is diagnosed in childhood and type 2 diabetes develops later in life. However, a team of researchers in Europe and Asia may have identified another form of diabetes: maturity-onset diabetes of the young or MODY.

According to the researchers, MODY is believed to be “caused by a gene mutation and fueled by a lack of the insulin-stimulating hormone GIP.” Individuals with this condition have a mutation of the gene RFX6. Subjects of the study had typically developed MODY by the time they were 25, were not obese, were not insulin-dependent, and had an autosomal dominant inheritance of diabetes.

The researchers believe that the gene mutation results in the pancreas decreasing its insulin secretion, which is common in individuals with diabetes. However, subjects also had lower levels of the GIP hormone which stimulates and regulates insulin secretion. Researchers are hopeful that the creation of GIP analogs may help to treat MODY.

One challenge they have faced is distinguishing between individuals with type 1 or early-onset type 2 diabetes versus those who may have MODY. Improvements in gene testing and sequencing have allowed them to better identify RFX6 mutations.

As scientists and researchers develop a better understanding of diabetes, its forms, and how it impacts the body, it allows for more personalized treatment options. Individuals can find what works best for their specific type of diabetes and their body’s needs. The Diabetes Research Connection encourages and supports novel studies on type 1 diabetes to expand understanding and treatment approaches. Early career scientists receive up to $50,000 in funding for research projects. Learn more about current projects and how to support these efforts by visiting http://diabetesresearchconnection.org.

Learn More +

Could Blood Stem Cells Be Used to Reverse Type 1 Diabetes?

Researchers know that in individuals with type 1 diabetes, the body mistakenly attacks and destroys insulin-producing beta cells that are used to regulate blood sugar levels. One of the challenges in treating T1D is finding a way to stop this process, or safely introducing new cells to take their place but protecting them from the body’s autoimmune response. This has proven difficult.

Researchers at Boston Children’s Hospital may have found a way to overcome these challenges by combining the patient’s own blood cells with a healthy PD-L1 gene or a targeted molecule “cocktail” of interferon beta, interferon gamma, and polyinosinic-polycytidylic acid. Both of these approaches had the same effect.

Scientists found that the problem with current treatments involving immunotherapy or injecting patients with their own blood stem cells is that these cells are still defective in producing PD-L1, a protein that helps protect against T1D. By introducing a healthy PD-L1 gene (or the “cocktail”) in mice with diabetes, the disease was reversed. In nearly all of the mice, the diabetes was cured in the short term, and in one-third of the mice, these results were long-term. In addition, there were no adverse effects of the treatment.

The researchers are working on gaining approval for human trials to test this therapy, and partnering with Fate Therapeutics to create a pill that would introduce these healthier blood stem cells. More extensive testing is necessary to determine how long the treatment is effective and how frequently it would need to be re-administered. However, it is encouraging to see the initial reversal of T1D in mice and what that may mean in the future for humans with the disease.

The Diabetes Research Connection strives to help early career scientists continue advancing research and treatment options for type 1 diabetes. With the support of individuals, corporations, and foundations, novel research projects can receive up to $50,000 in funding. Learn more about current projects and how to support these efforts by visiting http://diabetesresearchconnection.org.

Learn More +

Potential Benefits of Incorporating Metformin in Type 1 Diabetes Treatment

Traditionally metformin is a drug used to help control blood sugar in individuals with type 2 diabetes. However, a recent study examined its effects in patients with type 1 diabetes. More specifically, the study looked at the impact on vascular health because individuals with T1D tend to be at higher risk of developing cardiovascular disease.

The researchers conducted a double-blind, randomized, placebo-controlled trial on 90 children in South Australia between the ages of 8 and 18 who had been diagnosed with T1D for at least six months. Half the of participants received metformin, and the other half received a placebo. A baseline vascular function was determined at the start of the trial and then tested at three, six, and 12 months. In addition, HbA1C, insulin dose, and BMI were also recorded at each visit. Throughout the trial, participants were asked about any side effects they may be experiencing so that therapy could be adjusted accordingly. Treatment compliance was also tracked.

The results showed that over the course of one year, vascular function improved in the metformin group compared to the control group. The difference was most noticeable at the three-month interval, and this is also when there was the greatest improvement in HbA1C levels for those in the metformin group. The difference was lower at the 12-month mark, but still significant. In addition, children in the metformin group also showed a decrease in the amount of insulin required over 12 months. Children with above-average BMIs who were taking metformin also showed improvement in vascular smooth muscle function. Overall, there were positive results for children with T1D taking metformin as compared to those receiving a placebo. However, the study was not continued long enough to determine potential changes in vascular structure, only vascular function.

With further testing, this could lead to more diverse treatment options for individuals with type 1 diabetes to help better control blood sugar and maintain a higher quality of life. It is these types of changes, as well as advancements in the treatment and prevention of T1D, that the Diabetes Research Connection aims to support. By funding novel research projects, the Diabetes Research Connection helps early career scientists to keep their work moving forward. Visit http://diabetesresearchconnection.org to learn more.

Learn More +

Treating Type 1 Diabetes with Synthetic Cells

Treating type 1 diabetes (T1D) takes careful planning and calculation. Individuals must test their blood to determine their blood glucose level, then calculate exactly how much insulin they need to inject. They must pay careful attention to what they eat and how their body responds. This is because, with type 1 diabetes, the body’s immune system mistakenly attacks and destroys insulin-producing beta cells. In individuals without T1D, these beta cells automatically secrete insulin to keep blood glucose levels in check.

However, researchers from the University of North Carolina and North Carolina State are testing synthetic cells that could replace those cells that have been destroyed and automatically release insulin in response to the body’s needs. They have created “artificial beta cells” or AβCs that are packed with insulin-stuffed vesicles. When blood sugar rises, the coating of the artificial cells changes and insulin is released. The cells would need to be injected every few days, or can be delivered by a skin patch that is replaced regularly.

These AβCs are an advancement in potential treatments for T1D. There are some studies regarding transplanting cells – whether donor cells, modified cells, or harvested cells – but the challenge is that they often require some immune suppression, can be very expensive, and the body generally ends up destroying these cells as well. The synthetic cells would be regularly replaced with new AβCs as they distributed their insulin. Studies conducted in mice have found that blood glucose levels returned to normal levels within one hour and were maintained for up to five days.

According to John Buse, MD, PhD, the Verne S. Caviness Distinguished Professor at UNC, chief of the division of endocrinology, and director of the UNC Diabetes Care Center who is a co-author of the study, “There is still much work needed to optimize this artificial-cell approach before human studies are attempted, but these results so far are a remarkable, creative first step to a new way to solve the diabetes problem using chemical engineering as opposed to mechanical pumps or living transplants.”

While this approach is still in development and requires more extensive testing, it is a step in the right direction for improving quality of life for individuals with T1D and improving management of the disease.

The Diabetes Research Connection supports innovative research to prevent or cure type 1 diabetes, reduce complications of the disease, and improve quality of life. Early career scientists can receive up to $50,000 in funding for their research through donations by individuals, corporations, and foundations. To learn more about current projects and support these efforts, visit http://diabetesresearchconnection.org.

Learn More +

Comparing Insulin Pumps and Injections for Managing Type 1 Diabetes

Learning how to effectively manage type 1 diabetes can take time. It takes practice and trial-and-error to understand how each person’s body responds to different foods, activities, and insulin doses. A recent study found that children with type 1 diabetes may be able to control blood sugar levels more effectively and reduce risk of complications by using insulin pumps as opposed to manually injecting insulin.

The study was conducted by the University of Metabolic Research Laboratories and analyzed data for 14,460 patients with insulin pumps and 16,460 who injected insulin. All participants had been diagnosed with type 1 diabetes for at least one year and were younger than 20 years old. The results for children and adolescents using pumps outperformed those who did not.

According the findings, only 9.55 children per 100 experienced severe hypoglycemia each year when using insulin pumps compared to 14 children per 100 for those who relied on injections. Along the same lines, 3.64 children per 100 were treated each year for diabetic ketoacidosis (DKA) while on an insulin pump compared to 4.26 children per 100 for those treated with injections. Furthermore, HbA1c levels and daily insulin doses were slightly lower for those with insulin pumps as well.

The results highlight the importance of considering insulin pumps for children living with type 1 diabetes and ensuring that they are educated on their condition and how to properly use the pump for blood sugar control. However, this is only one option available and may not be the best choice for all children. Dr. Simon Heller from the University of Sheffield was not involved in the study but notes, “For adolescents, particularly those who find it difficult to do all the complicated things in managing diabetes, pumps may not be the best option, particularly if insulin is missed.” Parents, children, and medical provider should work together to determine the best option for each individual.

The Diabetes Research Connection supports early career scientists in novel studies regarding type 1 diabetes in an effort to develop more effective treatment options, potential cures, and options for improving quality of life. For more information about current projects and opportunities for funding, visit http://diabetesresearchconnection.org.

Learn More +

New Biomarker May Help with T1D Detection, Prevention, and Treatment

As scientists continue studying type 1 diabetes (T1D), they develop a deeper understanding of changes that occur in the body. It has been known for a while that the body attacks insulin-producing beta cells in the pancreas leaving the body unable to regulate blood sugar. Researchers have recently discovered that MAIT cells within the body – cells that are activated by bacteria and associated with mucosae – may also play a role. They are part of the body’s innate immune system and may serve as a biomarker for early detection of T1D.

The study, which was conducted by AP-HP Necker-Enfants Malades Hospital in Paris and the Cochin Institute, examined blood sample from patients with and without T1D, as well as animal models. The results showed that MAIT cell levels were lower in the blood of children diagnosed with T1D than those who were not. This could be because the MAIT cells had migrated to the pancreas in children with T1D; they are believed to play a role in the destruction of insulin-producing beta cells. But one interesting point to note was that before T1D had even developed in the animal models, the MAIT cells were already altered. This could serve as an early form of detection and prevention of the disease.

The mutation in MAIT cells may also contribute to gut mucosa being more susceptible to bacteria. This may lead to an increased autoimmune response. When MAIT cells are functioning normally, they help maintain homeostasis in the gut mucosa.

Scientists may be able to use this information to enhance early detection of T1D, develop strategies for prevention, or improve targeted treatment options. More research is needed to explore the link between MAIT cells and gut microbiota, but this is a starting point.

The Diabetes Research Connection actively supports novel research regarding preventing, treating, and potentially curing T1D. The organization raises funds that are provided to early career scientists for innovative research projects. To learn more and support their efforts, visit http://diabetesresearchconnection.org.

Learn More +

A Multitude of Potential Treatment Options for Type 1 Diabetes

Type 1 diabetes is a condition that does not discriminate. It affects males and females of all races and ethnicities around the world. Researchers in many countries are striving to develop effective treatment options that help the body to regulate blood glucose on its own and reduce the need for constant monitoring and insulin injections. At the Kyoto Diabetes Mini-Symposium in June 2017, researchers presented various studies and their potential impacts. Here is an overview of some of the treatment options being explored:

Islet Transplantation: Islet transplantation is one option that scientists have been working on for many years. Patients receive infusions of human islet cells to replace the cells their bodies have mistakenly destroyed. Studies have shown that this approach has resulted in improved glycemic control and hypoglycemia awareness, as well as protection from severe hypoglycemic events in some patients. However, there are still challenges regarding the lifespan of the graphs and their prolonged effectiveness.

Cell Sourcing from Large Animals: One challenge that researchers have faced in islet transplantation is generating a sustainable amount of islet cells. Scientists have turned to large animals such as pigs to try to cultivate a new source. Studies have found that porcine islet cells function very similarly to human islet cells. However, there is concern over the potential transmission of porcine endogenous retroviruses, so scientists have been experimenting with gene editing to inactivate contributing sections of various genes and reduce risk.

Scientists are also exploring the possibility of generating a human pancreas inside a pig so that it will produce human islet cells. Similar studies have been done with rats and mice where each has developed a pancreas for the other. There are many ethical concerns and regulations to be considered with this approach, however.

Human Stem Cell-Derived Beta Cells: Scientists are exploring the potential of targeting human stem cells and guiding them into developing into pancreatic progenitor cells and eventually mature insulin-producing beta cells. Ideally, this would allow the body to better regulate its own blood glucose levels. Researchers are working on improving differentiation protocols and determining the best host conditions for the cells.

Cell Encapsulation: Current treatment involving transplantation requires patients to take medication that suppresses the immune system to keep it from attacking the transplanted cells or organs. While it protects the transplant, it puts patients at risk for a variety of complications. Scientists are working on a process to encapsulate islet cells in a device that protects them from an immune system attack. They are experimenting with different materials, locations, and processes to determine what may potentially work best.

These are just a few of the strategies scientists are investigating to help treat and potentially cure type 1 diabetes. There is still a lot more research and testing necessary to fully explore these options and their safety and efficacy. It is these types of innovative approaches that continue to advance knowledge and treatment regarding type 1 diabetes. The Diabetes Research Connection supports early career scientists in developing their research by providing essential funding. To learn more about current projects and contribute to these efforts, visit http://diabetesresearchconnection.org.

Learn More +

A Diabetes-Friendly Thanksgiving

Food-heavy holidays, such as Thanksgiving, can be particularly hard for those with type 1 diabetes. Between carb-heavy foods, meals served at odd times to accommodate everyone’s schedules and perhaps even multiple meals with different sides of the family or groups of friends, keeping your blood sugar in check on Thanksgiving is no easy task.

However, with careful planning and some support from your family and friends, enjoying Thanksgiving doesn’t have to be difficult!

As you’re celebrating, keep the following in mind:

  • Don’t show up hungry.
  • Choose white meat turkey over dark meat, and skip the skin.
  • Opt for steamed vegetables over casseroles. For example, serve seasoned steamed green beans with salt, pepper and garlic powder instead of green bean casserole.

Thanksgiving Recipes

If you’re responsible for preparing a dish for a potluck or an entire Thanksgiving meal, consider these T1D-friendly takes on traditional Thanksgiving favorites.

Cauliflower Garlic Mashed Potatoes

Makes 4 servings.

  • 1 medium head cauliflower
  • 1 tablespoon cream cheese, softened
  • 1/4 cup grated Parmesan
  • 1/2 teaspoon minced garlic
  • 1/8 teaspoon straight chicken base or bullion (may substitute 1/2 teaspoon salt)
  • 1/8 teaspoon freshly ground black pepper
  • 1/2 teaspoon chopped fresh or dry chives, for garnish
  • 3 tablespoons unsalted butter
  1. Set a stockpot of water to boil over high heat.
  2. Clean and cut cauliflower into small pieces. Cook in boiling water for about 6 minutes, or until well done. Drain well; do not let cool and pat cooked cauliflower very dry between several layers of paper towels.
  3. In a bowl with an immersion blender, or in a food processor, puree the hot cauliflower with the cream cheese, Parmesan, garlic, chicken base, and pepper until almost smooth.
  4. Garnish with chives, and serve hot with pats of butter.

Nutrition (per serving): 149 calories, 11.5 g fat, 7 g saturated fat, 31 mg cholesterol, 170 mg sodium, 8 g carbohydrates, 4 g fiber, 4 g sugars, 5 g protein

Source: http://www.foodnetwork.com/recipes/mock-garlic-mashed-potatoes-recipe-1942447.

Pumpkin Pie (with Crust)

Makes 10 servings.

For the pie crust:

For the filling:

Make the Crust:

  1. Preheat your oven to 375 degrees F.  In the bowl of a food processor, pulse all crust ingredients EXCEPT egg to create thick crumbs, then pulse/process in the egg until a dough forms.
  2. Gather the dough into a ball, wrap in plastic, and chill in the refrigerator at least 20 minutes prior to rolling or pressing into your pie dish.
  3. To get the dough into your pie dish, you can either:
  4. Roll out the dough into a circle between two sheets of parchment. Place your pie dish upside-down over the dough, then using the bottom parchment paper, flip the dough into the dish. Finish by pressing it into the bottom and sides of the pie dish to fit – this dough will break easily since it lacks gluten, however, it also repairs incredibly easily and can withstand a lot of manipulation without affecting the final product! *
  5. If you don’t wish to roll out the dough (or find it tricky) you can simply press evenly into 9-inch pie dish using your hands.  Be patient and refrigerate dough as needed to make it easier to work with**
  6. Once pressed into the pie dish, gently pierce the dough with a fork all over so it doesn’t puff up while baking.
  7. Bake pie crust in 9” pie dish in the 375-degree oven for 12-15 mins until bottom is set, remove from oven and allow to cool for 5 minutes before pouring in filling.

Make the Filling:

  1. Whisk all ingredients except eggs, then whisk in eggs and egg yolk 1 at a time, don’t overmix.
  2. Pour filling into partially baked crust, spreading it all around to seal edges. Cover top with aluminum foil and bake (at 375 degrees F) 40-45 minutes or until center is nearly set (still a bit jiggly) and crust is deep golden brown.
  3. Allow to cool completely at room temperature to avoid excessive cracking of the filling. Once cooled, serve, or, cover and store in the refrigerator for up to 2 days prior to serving.

Recipe Notes

*Coconut sugar will cause the crust to darken more than maple sugar

**Unlike a traditional gluten-containing crust, you can’t “overwork” the dough, so take your time as needed pressing it into the pie dish

Nutrition (per serving) 302 calories, 21 g fat, 9 g saturated fat, 68 mg cholesterol, 5 g protein, 24 g carbohydrates, 10 g sugar, 3 g fiber, 144 mg sodium

Source: https://www.paleorunningmomma.com/classic-paleo-pumpkin-pie-crust-recipe/.

 

For more T1D-friendly recipes and eating tips, make sure to subscribe to our newsletter.

Learn More +

Gallbladder Cells May Be A Viable Source for Treating Type 1 Diabetes

One of the main focuses of many studies regarding type 1 diabetes is how to generate new cells or reprogram existing cells to function as insulin-producing beta cells. Scientists have been exploring islet transplantation, gene editing, and more. Now, scientists from Oregon Health and Science University led by Professor Markus Grompe and Dr. Feorillo Galivo are evaluating the potential that human gallbladder cells may hold.

In type 1 diabetes, the body mistakenly destroys insulin-producing cells leading to uncontrolled blood glucose levels. The scientists introduced four new genes into harvested gallbladder cells which reprogrammed the cells to act more like the insulin-producing beta cells that the body had destroyed. In laboratory testing, these cells were able to respond to increased blood glucose levels by producing insulin. They also transplanted the cells into mice, but more research is needed to determine whether they are able to effectively control blood glucose levels. One issue that was discovered is that the cells had a very short lifespan, only surviving about four weeks. Some cells were also overly active.

They are still in the earlier stages of research and more testing and adjustment is necessary, but preliminary results show that this technique may hold great potential. This is yet another treatment strategy to explore and see how it can be used to treat and potentially cure type 1 diabetes.

The Diabetes Research Connection supports novel research projects by early career scientists providing up to $50,000 in funding. Projects are all focused on preventing and curing type 1 diabetes or improving quality of life for those living with the disease. To become a donor and support these initiatives, visit http://diabetesresearchconnection.org.

Learn More +

Simpler Measuring Technique May Help Identify Partial Clinical Remission in Type 1 Diabetes

One of the major challenges of type 1 diabetes is effectively managing blood glucose levels. It is a careful balancing act and differs for every patient. With type 1 diabetes, the body’s immune system mistakenly attacks and destroys insulin-producing cells. This means that patients require regular insulin injections to compensate. However, this is not a perfect solution and patients may still experience complications or side effects and need to be carefully monitored.

Researchers found that after children are initially diagnosed with type 1 diabetes and begin treatment, some experience partial clinical remission (PCR), also known as a “honeymoon period.” During this period, the pancreas is still producing some insulin on its own, and this can temporarily restore blood glucose levels to near normal. This means that patients require fewer or lower doses of insulin. The honeymoon period may last from three months to one year.

But not all children experience this effect. Those who do not are at a higher risk of developing diabetes-related complications. This makes it even more important for physicians to determine whether or not children go into partial clinical remission so they can develop a more effective treatment plan moving forward.

Traditionally partial clinical remission is determined by calculating daily insulin doses and average blood glucose levels and then analyzing the correlation (known as IDAA1C). This can take some time, and when faced with tight time schedules, physicians may not use this method as often as recommended.

In light of this, UMass Medical School physician-scientist Benjamin Nwosu, MD, began studying the accuracy of a simpler method. This approach involves evaluating the total daily dose of insulin the child receives compared to their body weight. If they receive less than 0.3 units per kilogram of body weight per day, it indicates they are in partial clinical remission. There were no major differences in results between using this method and the more complex IDAA1C technique. It is a faster way for clinicians to determine the same results and is just as reliable.

According to Dr. Nwosu, “Encouraging clinicians to use the total daily dose of insulin guideline will improve monitoring of PCR and, therefore, ensure the prevention of early hyperglycemia in patients who exceed it for better long-term outcomes.”

It is encouraging to see an emphasis on early detection and more effective treatment for type 1 diabetes. The Diabetes Research Connection raises funds for early career scientists who are pursuing novel research projects related to the prevention and cure of type 1 diabetes as well as improving quality of life for those living with the disease. One hundred percent of research funds go directly to scientists. To learn more and support innovative studies, visit https://diabetesresearchconnection.org.

Learn More +

HOW TO MAKE RECIPES MORE DIABETIC FRIENDLY

One of the things that we’ll do more of in the future for Sweet Talkers is to discuss how to lower the number of carbohydrates in a recipe. For example, I was reviewing a recipe with that goal in mind just recently and wanted to share some carb lowering information.

First of all, I am always testing sugars in recipes with the goal of using the healthiest, least processed sugar I can find. Obviously, I am also always looking to limit the amount of sugar I use in a recipe as well but still maintain the sweet taste. Thirdly, I’m always going for good taste. Here’s an example of the kind of analysis I do:

  • 1 Tablespoon of organic Honey =  64 Calories, 17gr Carbs, No Fiber
  • 1 Tablespoon of organic Coconut Nectar = 87 Calories, 18gr Carbs, No Fiber
  • 1 Tablespoon of organic Maple Syrup =       52 Calories, 13gr Carbs, 2mg Sodium

You can easily see here that organic Maple Syrup is the lowest in carbs but will the maple taste alter the taste of the recipe too much? That’s the main question: how will changing an ingredient taste within a given recipe? Also, I track calories as well since that’s often a concern re weight gain.

If the recipe I’m working on altering (to be more diabetic friendly) won’t taste good with Maple Syrup, I typically use Coconut Nectar because the coconut taste usually just comes across as sweet; not coconutty, and the taste is subtle and lower carb in general. I also will typically cut the sugar amount in a recipe by two thirds to one half and see if I can still maintain a sweet enough taste.

Another very helpful substance to use to lower sugars in recipes are extracts for flavoring. While we’re all accustomed to using vanilla extract, especially when baking, there are many other flavored extracts that work beautifully to enhance the flavor of a recipe without increasing the sugar amounts.

Medicine flower culinary extracts offer an extensive line of extracts in many different flavors. As an example, you can take plain yogurt and add about (3) drops of liquid Stevia (no carbs) followed by a drop or two of tropical extract and have a delicious and sweet morning yogurt without any spike in your blood sugars.

Here’s the bottom line: When looking to make a typical, favorite recipe more diabetic friendly, find out first which ingredients have the highest carbs. Then look for healthier, lower carb substitutes that will still maintain the taste/flavor of that recipe and swap the lower carb ingredient in.  Consider using culinary extracts to enhance and compensate for high sugar amounts in recipes.

 At first, this seems time-consuming but altering recipes to make them healthier and more diabetic friendly is a habit that forms easily. It all starts with just paying more attention to what you’re really eating and a number of carbohydrates in a given recipe. Remember, look for foods that are organic, Non-GMO and the least processed.

For more information on this topic and Type 1 Diabetic friendly recipes, visit www.sweettalkers.org

Learn More +

What Gene Editing Could Mean for Type 1 Diabetes

Altering human genetics is a sensitive subject. There are a lot of things that could potentially go wrong, but also many that could go right. CRISPR/Cas9 technology allows scientists to precisely cut out a segment of DNA and replace it with a new segment. By modifying specific genes, they could essentially eliminate certain diseases and remove inherited diseases from the human germline.

This unleashes new opportunities when it comes to treating – and potentially curing – diabetes. Scientists recently implanted skin grafts with a gene (GLP1) to stimulate insulin secretion by the pancreas. They attached these grafts to mice and found that the new genes helped to remove excess glucose from the bloodstream. Using skin grafts is a safe and relatively inexpensive process.

Researchers in Sweden managed to use CRISPR/Cas9 to switch off an enzyme that is involved in regulating the TXNIP gene which affects beta cell death and decreases insulin production. In Australia, the technology was used to try to identify rogue immune cells that attack the pancreas and contribute to the development of type 1 diabetes.

However, there is still more research that needs to be done to fully understand the impact of gene editing and potential effects that it could have. Though highly precise, there is still around a one percent chance of off-target effects occurring. These are changes to other parts of the genome outside of the area targeted by CRISPR/Cas9. There is a lot of risks involved with changing human DNA and many questions that are still unanswered. Furthermore, many of these studies have been conducted on mice and results do not always correlate exactly to humans.

But with more extensive testing and research, scientists may be able to find a safe way to treat or even cure diabetes through gene editing. Studies that exist so far hold potentially promising results. It is these types of cutting-edge, innovative approaches that could change the future of type 1 diabetes. The Diabetes Research Connection proudly supports early career scientists in pursuing novel research for type 1 diabetes. Learn more about current projects and how you can support these efforts by visiting http://diabetesresearchconnection.org.

Learn More +
Stem Cell

Tackling Type 1 Diabetes at a Cellular Level

In individuals with type 1 diabetes, the body mistakenly attacks insulin-producing cells and destroys them. This leaves the body unable to regulate the amount of sugar in the blood or shift the sugar into cells that convert it into energy. Uncontrolled blood sugar can take a toll on the body damaging the kidneys and heart and leading to other complications. Individuals with type 1 diabetes must take care to monitor their own blood sugar and administer the correct amount of insulin to make up for the work that would normally be done by the pancreatic cells.

However, researchers at the University of Pittsburgh are looking for a way to overcome these challenges by focusing on change at a cellular level. Since the body destroys insulin-producing cells, they are striving to replace them. The researchers want to use the body’s own pluripotent stem cells and turn them into pancreatic islet cells.

To do this, they must determine exactly how to manipulate the cells to get them to transform into the islet cells needed by the body. They are working in collaboration with other universities to further their studies.

According to Ipsita Banerjee, principal investigator in the study and a professor of chemical and bioengineering at the University of Pittsburgh, “We should be able to mass produce these islets, and actually, we have another grant where we are primarily looking into how to mass produce pluripotent stem cells.”

Results from early clinical trials show short-term improvement in more than half of participants. They were able to go off of insulin for two-week periods of time during the first year but most eventually had to continue using insulin injections. Further testing and clinical trials could help to improve these results.

This is far from the only study being conducted to improve the lives of individuals with type 1 diabetes. Researchers are continually striving to make innovate breakthroughs and try cutting-edge approaches. The Diabetes Research Connection supports early career scientists with up to $50,000 in funding for research on type 1 diabetes. These are projects that hold potential but may be passed over by more prominent and competitive funding sources. Learn more about the amazing work of these researchers and support their studies by visiting  http://diabetesresearchconnection.org. Every penny counts.

Learn More +

Could Beta Cell Age and Differentiation Play a Role in the Development of Diabetes?

The exact cause of type 1 diabetes is yet unknown. Researchers have a good understanding of how type 1 diabetes works and impacts the body, but not of the cellular intricacies that contribute to the development of the disease. A recent study examined the age and role of beta cells within pancreatic islets to better understand proliferation and function within the organ.

The study examined zebrafish and found that younger beta cells replicate more quickly than older beta cells, but they are less functional in terms of glucose responsiveness. As cells mature, they synchronize their proliferation and function.  In addition, within the pancreas differentiated cells are responsible for both organ growth and function, but it is yet undetermined whether certain cells make specific contributions to one factor or the other.  Organs such as the brain operate differently when it comes to increases in cellular mass and differentiation of cell function.

Through closer examination, researchers found that in the pancreas, beta cells differentiate according to the location in different parts of the embryo. In post-embryonic stages of development, beta cells from these different lineages are all brought together. This may also impact glucose responsiveness and the ability to balance insulin production with the energy necessary to support cell division. More research is necessary to determine exactly how proliferation and function affect heterogeneity in human beta cells and pancreatic islets.

The Diabetes Research Connection supports innovative and cutting-edge research when it comes to type 1 diabetes. Funds are raised for early career scientists to advance their research and contribute to the prevention or cure of type 1 diabetes as well as improving quality of life for those living with the disease. To learn more and support research efforts, visit http://diabetesresearchconnection.org.

Learn More +

Easing Transitions from Pediatric to Adult Care for Diabetes

Type 1 diabetes is a chronic condition that often emerges in childhood, and, as of yet, has no cure. Patients must learn to effectively manage their diabetes throughout all stages of their lives and continue following up with their healthcare provider. However, a recent study found that as children progress from adolescence into adulthood, there is often no formal transition process to help them adapt to adult care for diabetes.

In shifting from pediatric to adult care, patients must find a new provider who is skilled in managing diabetes care, transfer their records, adapt to less flexible scheduling options, and familiarize themselves with the changes that come with moving to an adult provider. These can all be challenging adjustments while also dealing with other life events that come with adulthood.

While the United States created a series of recommendations for facilitating this transition, many diabetes centers still did not have a structured program in place. The study interviewed 15 pediatric diabetes centers in Quebec and found that only three had a formal policy on transitions. However, they did not include patients or their families when creating these policies. Some facilities required patients to transition at age 18 while others gave more flexibility depending on the patient’s readiness.

Given that type 1 diabetes is a condition that patients must manage throughout their lives, providing the support and guidance necessary to ease transitions and promote continued good health is essential. It is important to raise awareness and encourage pediatric and adult practices to increase communication and coordination in helping patients with diabetes to transition their care between providers.

The Diabetes Research Connection is doing its part to raise awareness when it comes to type 1 diabetes and the push to find more effective treatments and ways to improve quality of life. The organization provides funding to early career scientists who conduct research focused on type 1 diabetes and are developing innovative approaches. Help support these projects by visiting the Diabetes Research Connection online.

Learn More +
Islet transplantation requires immunosuppressive drugs be taken for the rest of a person's life, though improving the body's ability to manage glucose levels significantly lowers the risk for adverse health events. islet transportation Andrey_Popov/Shutterstock

Researchers Target Immune System for Potential Type 1 Diabetes Treatment

The immune system plays an important role in type 1 diabetes; after all, it is the immune system that destroys insulin-producing cells. When cells are damaged or destroyed, it decreases the body’s ability to convert sugar to energy and produce insulin. Instead, individuals must monitor and adjust their insulin on their own through injections or an insulin pump.

In a small study, researchers examined the possibility of retraining the body’s immune system to not attack insulin-producing cells. They did this through the use of peptide immunotherapy. According to Simi Ahmed, senior scientist at JDRF, “The immunotherapy re-educates the immune system and teaches the cells that they shouldn’t attack the beta cells.”

This is done by injecting disease-related antigens to stimulate regulatory T-cells development and/or make them work better.  However, scientists have not yet determined exactly which antigens are responsible for type 1 diabetes. This is an area where more research is needed.

The study divided up 27 participants into three groups.  All participants had been diagnosed with type 1 diabetes within 100 days, because scientists wanted to test the immunotherapy before all or most of the T-cells had been destroyed, which is common in individuals who have had diabetes for many years.

One group received a placebo drug, one group received immunotherapy every four weeks, and one group received immunotherapy every two weeks. The results showed that the control group had decreased C-peptide levels at 3, 6, 9, and 12 months, but those who received immunotherapy every four weeks had no decline in C-peptide levels. The group that received immunotherapy every two weeks showed a decline in C-peptide levels at 12 months.  When C-peptide levels decrease, it means that less insulin is being produced.

While the test group was too small to determine why these variations occurred, it does show that there is potential in this therapy and more extensive testing is needed with a larger group.  There were no noted side effects, meaning immunotherapy appears to be safe for individuals with type 1 diabetes.

Further research is needed to determine how often immunotherapy would be needed and whether individuals who have had the disease for many years could potentially benefit. Studies have shown that some people who have had diabetes long-term still have detectable C-peptide levels.

This study opens the door for many new trials and areas of research. Immunotherapy is an approach that may hold great potential upon initial diagnosis of type 1 diabetes. The Diabetes Research Connection supports this type of innovative research and funds studies that are often deemed high-risk. Learn more about the projects backed by the Diabetes Research Connection by visiting us online and consider donating to the cause.

Learn More +

How to Live a Healthy Life with Type 1 Diabetes

About Christel

Christel is a Los Angeles based blogger, certified personal trainer, and diabetes advocate. She has been living with type 1 diabetes since 1997 and at an early stage decided that it wasn’t going to slow her down. Her motto is “There is Nothing You Can’t do With Diabetes”. She writes about Health, Fitness and how to be Fit With Diabetes on TheFitBlog.com. She also trains people with diabetes from across the globe, online and in person, and supports them in meeting their health and fitness goals.

How to Live a Healthy Life with Type 1 Diabetes

Most of the people who approach me for diabetes coaching wants to know the secrets to living a healthy life with diabetes.

Many of their questions are about weight loss, blood sugar management when exercising, and healthy nutrition. There is so much conflicting information online on what we should and should not do to be healthy with type one diabetes that it’s no wonder there’s confusion on the subject!

I love sharing my experience and what works for me. I started my website, TheFitBlog.com, as a solution to what I perceived as an information void when it comes to exercise and health for people living with diabetes. TheFitBlog is a dedicated diabetes website written by people with diabetes for people with diabetes.

You’ll find an abundance of resources on TheFitBlog, but today I want to share my top tips for living a healthy life with #T1D.

1.     Resistance training

While cardio can be great for stress management and strengthening the cardiovascular system, resistance training is literally your golden ticket to better diabetes health – both in terms of body composition and insulin sensitivity.

Think of your muscles as a lot of little “gas tanks” that can store glucose. Because glucose from your food is mainly absorbed by your muscle tissue, resistance training (which builds muscle mass) is particularly good at improving blood sugars after meals. You don’t have to build bodybuilder-sized muscles to achieve this effect or even the amount of muscle mass I have. Any improvement from where you are now will help.

Resistance training, combined with proper nutrition, has also been shown to be the most effective combination for changing body composition and reducing overall body fat.1

If you’re new to resistance training start with body-weight exercises or resistance bands before progressing to using weights.

2.     Gain an understanding of nutrition and know what you eat

Being active is a great step toward a better health, but if you don’t eat according to your goals, you won’t get far. I often say that proper nutrition is 80% of the journey.

When it comes to proper nutrition for people living with type 1 diabetes, I don’t believe there is one approach that is the best for everyone. I always recommend eating a balanced diet, including low/medium glycemic carbs, lean protein, and healthy fats in amounts that support whatever your fitness and health goals are.
However, some foods will affect blood sugars more or less dramatically and I recommend that you spend some time learning how different food affects your blood sugar. Because even if you stick to low glycemic carbs, some might not work for you.

A great example is old-fashioned oats. They are generally considered a great carb source from a blood sugar perspective, but for some people, oats will make their blood sugar skyrocket. You have to learn what works for you through experimentation.

A good way of assessing if your current diet is right for your needs is to keep a food diary for a while. It can be very helpful in understanding your current diet and how they affect your mood, weight, and blood sugars. This includes measuring out portions and thereby (re)learning portion sizes and accurate carb counting.

3.     Track and learn

Aside from tracking your nutrition and potentially making tweaks, I highly recommend spending some time tracking and analyzing how your body reacts to other key variables.

Tracking the key variables in your health journey (such as exercise, food, stress, and sleep) and their impact on your blood sugar is the only way you’ll start seeing trends and learn to be as proactive as possible when it comes to blood sugar management.

For, ultimately, you can’t adjust to what you don’t know or understand, and it’s impossible to look for trends and patterns without data.

What I’ve found, with myself and the many people with T1D I’ve worked with over the years, is that when we start understanding how our bodies react to certain types of exercise and different foods, it becomes easier to reduce the amount of out-of-range blood sugar. It takes time and effort but putting in that work up front sets you up with less blood sugar related frustrations in the future.

4.     Do what you love

Although I just tried (hard) to convince you that resistance training is the way to go, that might not be the right thing for you. If you try it out (give it at least a month) and really don’t like it, do something else. For an exercise routine to be something you can adhere to, you must enjoy it at some level, or at least don’t hate it.

There are so many ways to exercise that you should be able to find something you like. If you prefer dancing, do that. Biking, running, swimming and walking are all great too.

I’ve also found that switching it up, for example, doing yoga one day and resistance training another can be really beneficial for body and mind. However, you’ll have to watch your blood sugar since different types of exercise will impact your blood sugar differently (read more about that here).

Conclusion

Getting your exercise regime and nutrition dialed in to fit your needs and goals is something that can and should take a little time. We can’t expect results overnight, especially since we have a few more variables to take into consideration that people who don’t have T1D do. But if you take your time and learn how your body reacts to exercise and your nutrition, you can start making small tweaks that will lead to better health and diabetes management in the long run.

References

1. https://www.ncbi.nlm.nih.gov/pubmed/28871849

Learn More +

Exploring the Impact of Gut Bacteria on Type 1 Diabetes Risk

Over the years, researchers have significantly improved their understanding of type 1 diabetes, but there are still many questions left unanswered. They still do not understand exactly why some people develop this condition and others do not, and there is still no cure.

A recent study is taking a closer look at the role gut bacteria plays as a risk or protective factor in the development of type 1 diabetes.  Scientists at Harvard Medical School studied mice who were bred to develop diabetes and altered their genetics and levels of gut bacteria.  Each mouse carried a gene variant that was shown in other studies to protect against diabetes.  During the first six weeks of their lives, the mice were given antibiotics, and the scientists believe that this disrupted the natural balance of gut bacteria reducing their protection against diabetes.  The mice showed inflammation of the pancreas, which often precedes type 1 diabetes.

However, they also found that those mice who inherited the protective gene from the mother were still resistant to diabetes, but those that received it from the father were not. This could be an important link between the protective abilities of gut microbiota and genetics passed between mother and baby.  But it is important to note that there are “significant physiological differences” between mice and humans according to Diane Mathis, lead author of the study and professor in the Department of Microbiology and Immunology at Harvard Medical School.

Though more extensive research needs to be conducted, especially to determine how the results may correlate to humans, scientists believe that reducing exposure to antibiotics in newborns and pregnant women may be beneficial in reducing risk of type 1 diabetes or maintaining gene protection.

These types of studies are essential in advancing research to prevent and cure type 1 diabetes. The Diabetes Research Connection strives to provide early career scientists with the funding necessary to pursue innovative research for type 1 diabetes.   One hundred percent of research funds raised go directly to the scientists. To learn more about current projects or make a donation, visit https://diabetesresearchconnection.org.

 

Learn More +

Younger Scientists Gain More Support for Research Grants

 

The National Institutes of Health (NIH) is incredibly well-known for its grant offerings to support innovative research. Over the years, it has funded millions of dollars’ worth of research initiatives. However, a recent finding by a professor of structural biology and an informatics researcher has uncovered a disturbing trend – many of the grants awarded by the NIH go to older principal investigators (PIs), and younger scientists are missing out.

According to their study, since 1982, PIs under age 46 have received fewer grants than older PIs. Many of the grants have been awarded to PIs over age 55. While there are committees in place that review proposals and determine who receives the grants, these committees are made up of grantees – many of whom happen to be older, since that has been the trend in awards. The study suggests that these committees may be more hesitant to award grants to younger PIs because they are young and have less experience.

However, the NIH is taking steps to change its processes and shift more grant awards toward younger PIs. They plan to put a cap on how many grants PIs can have at one time and already implemented a policy that examines age bias in awarding grants.

“This is why the Diabetes Research Connection (DRC) is an important source of funding for innovative research that, because of ‘its high-risk,’ is almost impossible to fund from traditional funding sources,” says President and Co-Founder Alberto Hayek, M.D.

Supporting early career scientists is one of the reasons the Diabetes Research Connection was initially founded. The organization focuses on connecting these researchers with funding to advance their studies and explore topics that may be considered too high-risk by other institutions. Through the DRC, scientists can receive up to $50,000 for research projects focused on preventing or curing type 1 diabetes, minimizing its complications, or improving quality of life for those living with type 1 diabetes.  One hundred percent of donations for research go directly to the scientists. To learn more about the Diabetes Research Connection and find out how you can support innovative research, visit http://diabetesresearchconnection.org.

Learn More +

11-year-old Pounds the Pavement for Type 1 Diabetes Research

Although our understanding of type 1 diabetes has improved greatly over the years, it is still a condition with no known cure. Individuals must still monitor their blood sugar day in and day out to ensure that it is at a safe level. This often involves the use of insulin, glucose tablets, and carefully tracked diet and exercise.

Diagnosed with type 1 diabetes at just 16 months old, Noah Barnes, now 11 years old, decided that he wanted to make a difference. He had watched a documentary about Terrance Fox, who raised awareness and funds to fight cancer by running across Canada even though he only had one leg. This inspired Noah’s goal to trek across the entire United States doing the same for type 1 diabetes.

He convinced his father, Robert Barnes, to join his cause, and the two of them set out from Florida at the beginning of the year to fight for a cause that is so close to their hearts.  Together they have walked day after day, not giving up.  As of the end of August, they had reached Utah, more than 2,000 miles from where they started.  They have gone through a combined nine pairs of shoes but have raised more than $22,000.  Their final destination is Blaine, Washington.  If they make it, they will join the ranks of just 267 others who have walked across the United States, and Noah will be the youngest to have completed this journey.

The father-son duo is determined to raise awareness and funds to one day find a cure for type 1 diabetes.  Even after their trek across the United States is finished, their mission is not. They’ll continue to fight for the cause and be advocates in other ways. Noah answered the call to be a Gamechanger from the Diabetes Research Connection. To support his goal and advance type 1 diabetes research, visit his Gamechanger page.

Learn More +

Tips and Tricks for Managing Diabetes

Managing type 1 diabetes can be tricky. Everyone’s body is different and responds differently to certain types of activity and treatment. That is why it is so important to be vigilant about monitoring blood sugar and knowing how to respond quickly and appropriately. If you have a child with diabetes, you want to ensure that they know how to check their blood sugar, what the results mean, and how to respond if it is too low or too high. In addition, those who spend the most time with them – whether family, friends, educators, or coaches – should also know how to assist and provide help when necessary.

Diabetes Forecast asked its readers to share some of their best diabetes hacks, which you may find helpful as well.

Be Prepared. One reader fills plastic pencil boxes with supplies her child may need at school and leaves one in each classroom. The box contains not only snacks and juice, but also glucose tablets and information on managing diabetes. Your child could also carry one in their backpack, or have one in the locker room. This is something that could be done at any age, and that adults can do as well. Consider leaving prepared boxes in your desk at work, the break room, or other places you frequent.

Plastic cases also come in handy for organizing supplies. One reader uses different colored boxes for different times of the day when preparing insulin syringes for the week. Just make sure that everything is clearly labeled as well. This can also be a good way of helping your child learn to manage their diabetes through color-coding.

Find what works for you. Not a fan of orange juice? Keep apple juice or grape juice on hand instead. Looking for a quick way to get your 14 grams of carbohydrates without taking a glucose tablet? Stock up on fun-size packs of Skittles which are perfectly proportioned and easy to grab and go. You could also prepare small baggies with four Starburst, 12 gummy bears, two tablespoons of raisins, or six large jelly beans. A small apple or orange work well too to quickly boost blood sugar.

Other hacks include adapting clothing to accommodate your insulin pump or finding accessories where you can easily store your supplies for quick access while working out or traveling. This way, you can continue carrying about your normal business while also effectively managing your diabetes and being prepared.

While there is not a cure yet for type 1 diabetes, scientists continue to learn more about this condition and develop cutting-edge treatment possibilities. The Diabetes Research Connection provides valuable funding that allows early career scientists to pursue research and trials that may one day change how type 1 diabetes is treated. Learn more by visiting us online and checking out current projects.

Learn More +

Is the Secret to Stopping Type 1 Diabetes in Your Gut?

Type 1 diabetes can be a challenging condition to manage. Because the body destroys insulin-producing beta cells, patients require regular blood glucose monitoring and use of insulin injections to stabilize their blood sugar levels. This differs from type 2 diabetes, which can in some cases be managed through targeted diet and exercise plans.

Changes in diet and lifestyle were previously thought to have little influence on type 1 diabetes because of the nature of the disease. It is not just that the body is not creating enough insulin, it is the fact that the body attacks and destroys the very cells that produce it.

However, new research is changing scientists’ understanding of type 1 diabetes and potential treatments. They have found that metabolites in the gut may help protect against type 1 diabetes. That means that changing one’s diet may make a difference. More specifically, adding whole foods that are high in fiber.

Researchers have been studying the effects of acetylated or butyrylated high-amylose maize starch on mice. Acetate and butyrate are short-chain fatty acids (SCFAs) that not only affect metabolism of glucose and cholesterol, but are also used for energy, immune tolerance to food antigens, increasing gut barrier function, and reducing inflammation. When mice were given acetate-infused water for five weeks, their incidence of type 1 diabetes was 30 percent lower than the control group – 40 percent versus 70 percent. After 10 weeks, the amount of immune cells that had infiltrated the pancreatic cells had decreased as well. The acetate water combined with acetylated or butyrylated high-amylose maize starch stopped the progression of type 1 diabetes in the mice.

SCFA supplementation is already being studied in clinical trials for gastrointestinal disorders and has shown positive results and no negative effects. Research will now expand to include SCFA supplementation for treatment of type 1 diabetes.

While typical foods do not contain acetylated or butyrylated high-amylose maize starch, they do contain regular maize starch, and that has been found to be effective as well.  Eating a diet rich in high-fiber foods can stimulate the production of acetate and butyrate in the colon, thus potential supporting gut health and reduced risk of type 1 diabetes.

Beneficial foods include garlic, onions, leeks, asparagus, artichokes, beans, legumes, potatoes, rice, apples, oranges, bananas, cherries, and apricots. Just be sure to slowly introduce more fiber into the diet to allow the body time to adjust and reduce uncomfortable side effects such as stomach cramps or gas.

Using food for medicinal purposes is nothing new – it has been done for centuries. However, it is something that is often overlooked. These recent studies open doors to potential treatments and prevention methods for type 1 diabetes but require further research and testing. Organizations such as the Diabetes Research Connection support early career scientists in pursuing this type of work and advancing understanding and treatment of type 1 diabetes. Learn more and find out how you can support various projects at http://diabetesresearchconnection.org.

Learn More +

Cell Encapsulation Shows Potential for Treating Type 1 Diabetes

One of the challenges of treating type 1 diabetes is developing a process that will stimulate insulin production without triggering the body’s immune system to attack these cells. Many potential solutions have undesirable side effects, only short-term success, or still require immune system suppression, which can be hard on the body.

Current studies have been focused on the use of islet transplantation to help manage blood glucose levels. Researchers have been trying to determine the most effective location for islet transplantation, and how to reduce rejection and providing lasting results.  One approach that has shown great potential is using macro- or microencapsulation of islet cells. This provides a layer of protection for the cells while still allowing the exchange of oxygen, nutrients, glucose, and insulin. Scientists must determine the optimal thickness and composition of the encapsulation device to allow the cells to remain viable, protected from immune response, and effective at moderating blood glucose levels. Some mice have shown a positive response to use of macroencapsulation devices and human stem-cell-derived insulin-producing cells for managing diabetes.

This study has only been conducted using animals so far, therefore more research and testing is needed before it is approved for human trials or treatment. Cell replacement therapy has come a long way and appears to be an effective path toward treating and potentially curing type 1 diabetes in the future. The use of human stem-cell-derived insulin-producing cells may help overcome shortages of islet donations and allow more patients to receive cell replacement therapy for type 1 diabetes. You can learn more about this study here.

The Diabetes Research Connection supports ground-breaking research studies that show potential in improving treatment and prevention of type 1 diabetes. All funding goes directly to early-career scientists’ research projects allowing them to advance their investigations. Help support the future of diabetes research and the effort to find a cure by donating today.

Learn More +
Laboratory Equipment - microscope

Support by DRC Enabled an Early-Career Scientist to Contribute to a Major Study Published in “Cell Report”

Support by DRC enabled Wendy Yang, Ph.D., to contribute to a major study published in Cell Report. In this study, the investigators discovered that alpha-catenin, a protein that regulates cell-cell interactions and communication is a potent regulator of pancreatic islet cell development. Click here to read the full article.

Learn More +

5 Back to School Tips for Families Managing T1D

Going back to school is a time of excitement for parents and children, but it can also be nerve racking for families dealing with T1D. Based on feedback from those with T1D and the leading tips found online, we’ve put together our top five back to school tips for families managing T1D. We hope these tips bring you a little peace of mind as you wave goodbye and send your child(ren) back to school.

  1. Consult with your physician about a Continuous Glucose Monitor1 (CGM) to see if it might be a good option for your child. A CGM will allow the parent(s) or guardian(s) to monitor blood glucose levels in real-time using the share function on your smartphone. For more information about CGM’s, click here.
  2. Schedule a school meeting with the school nurse, principal, and teachers to discuss your child’s diagnosis and their needs. At this meeting, you can work to establish a Diabetes Medical Management Plan2 (DMMP) for your child. This plan will line out the treatment regimen for the caregivers during school time. It is also recommended that you submit a 504 plan to the school district. Creating a 504 plan will make it official that your child, in fact, does have Type 1 diabetes and serves as a guide for school officials that can help ensure your child thrives while in school. For more information on creating a 504 plan, click here.
  3. Make sure your child always has everything on them they need to manage their diabetes while at school and school functions. Keep items together in a bag or container that is easy to identify and labeled with your child’s name, medical ID and emergency contact details. For a list of possible items to include in a T1D school kit3, click