The traditional method of managing type 1 diabetes is testing blood sugar levels, then dosing and administering the correct amount of insulin to keep blood sugar within the target range. This is done over and over again throughout the day, each and every day. Researchers are constantly seeking improved methods of managing the disease that are less patient intensive.
Over the years, scientists have created continuous glucose monitors, insulin pumps, artificial pancreases, and other systems to assist with managing type 1 diabetes (T1D). Each device has its pros and cons depending on the patient and their situation. Patients must find what works best for their needs.
A recent study is investigating yet another treatment option: a smart insulin patch. This small patch contains tiny microneedles with glucose-sensing polymer. When blood sugar begins to rise, the polymer is activated and releases doses of insulin. As blood-glucose levels return to normal, it stops administering insulin.
This technology removes the burden of constantly testing blood by patients and handles the testing and administration on its own. The needles penetrate the skin just far enough to be effective without causing much more than a pinprick of pain. The current model is designed to manage blood sugar levels for up to 24 hours and has been tested on mice and pigs. After 24 hours, the patch would need to be replaced with a fresh one.
Researchers are in the process of obtaining approval to begin human trials for the smart insulin patch. Although it may be several years before this technology could potentially be brought to market, it is a step in the right direction toward creating a more effective, efficient way of managing T1D. Researchers also believe that it may help reduce risk of insulin overdoses which can lead to hypoglycemia.
Though not involved with this study, Diabetes Research Connection (DRC) is excited to see what happens in the future if the patch is approved for human trials. It has the potential to become one more tool for individuals with T1D to use to manage the disease and enhance their quality of life. The DRC is committed to supporting research regarding T1D and providing funding to early career scientists for novel, peer-reviewed studies. Click to learn more about current projects and provide support.