DRC & Research News

This page shares the latest news in T1D research and DRC’s community.

Get the most recent diabetes research news, delivered straight to your inbox

COVID-19 testing

COVID-19 Symptoms in Individuals with Type 1 Diabetes

COVID-19 Testing

COVID-19 has taken our country by storm, and it is affecting individuals of all ages. No one is immune, and unfortunately, individuals with underlying health conditions tend to be at higher risk for complications. People with type 1 diabetes are already more severely affected by infections than individuals without the disease, and therefore they may be at higher risk for contracting COVID-19 and having poorer health outcomes.

A recent study looked at a group of 64 people with type 1 diabetes, 33 of whom had confirmed cases of COVID-19, and 31 of whom had COVID-19-like symptoms but no confirmed diagnosis. The median HbA1c levels were 8.5% and 8% respectively, and the average age was 24.8 years in the confirmed COVID-19 group and 16.8 years in the COVID-19-like symptom group.

Participants were part of a T1D Exchange Quality Improvement Collaborative (T1DX-QI) study and completed a 33-item questionnaire about their health and symptoms. They all had one or more symptoms that aligned with the Centers for Disease Control and Prevention’s (CDC) symptom profile for COVID-19.

The results showed that for both groups, high blood glucose, fever, and dry cough were the top three symptoms. Diabetic ketoacidosis (DKA) was reported in 45.5% of participants who tested positive for COVID-19 and 13.3% of those with COVID-19-like symptoms. This was a small study using data collected up to May 5, 2020. Additional research is needed to better track results as more is learned about the disease and its impact on individuals with type 1 diabetes. Also, since the average age of participants was teenagers and young adults and type 1 diabetes tends to develop in childhood, conducting pediatrics studies could also be beneficial to learn more.

As researchers continue to study COVID-19 and individuals with type 1 diabetes, they can better understand risk factors, complications, and therapeutic treatment options to deal with this novel coronavirus. The Diabetes Research Connection (DRC) is an organization dedicated to funding research around type 1 diabetes and will continue to stay abreast of the latest findings in regard to T1D and COVID-19. To learn more about the work conducted through the DRC and support these efforts, visit http://diabetesresearchconnection.org.

Learn More +
insulin-producing

Protecting Insulin-Producing Islets Through Cell Editing

Protecting Insulin-Producing Islets Through Cell Editing

A hallmark of type 1 diabetes is the destruction of insulin-producing beta cells in the pancreas. These cells are crucial for producing and releasing insulin in response to rising blood glucose levels. Without them, glucose levels go unregulated and can become potentially fatal. Individuals with type 1 diabetes must be vigilant about testing their own blood sugar and administering insulin via syringe or an insulin pump as necessary.

However, a recent study aims to transform diabetes management in children with type 1 diabetes by using cell editing to produce healthy, functioning T cells that would intervene in the destruction of insulin-producing beta cells. Effector T cells and regulatory T cells (Treg) work together to balance the body’s immune response. When effector T cells attack, regulatory T cells keep them in check and limit the damage. But in individuals with type 1 diabetes, regulatory T cells do not function normally.

Researchers at Seattle Children’s Research Institute’s Center for Immunity and Immunotherapies and the Benaroya Research Institute at Virginia Mason (BRI) have discovered a way to edit patients’ T cells so that they function like regulatory T cells and protect pancreatic islet cells. Through gene editing, they turned on the FOXP3 gene in the cells and attached a T-cell receptor to make them antigen-specific to pancreatic cells.

According to Dr. Jane Buckner, president of BRI and co-investigator of the study, “We want to identify T-cell receptors that will create engineered Treg that will go on to and protect the pancreas. This type of therapy could then be used to stop the destruction of cells that produce insulin in the pancreas to slow the progression and ultimately prevent type 1 diabetes.”

The team recently received additional funding and is moving toward gaining approval to start a first-in-human clinical trial at Seattle Children’s. There are currently no other laboratories in the world conducting this same type of experimental therapy. The engineered cells have been tested in animal models and tissue cultures with positive results, but this would be the first human testing.

Diabetes Research Connection (DRC), though not involved in this study, is excited to see how the study advances and if human clinical trials are approved. This could be a major step forward in treatment and prevention options when it comes to type 1 diabetes. The DRC is committed to supporting these types of efforts and provides critical funding to early-career scientists pursuing novel, peer-reviewed research around type 1 diabetes. Click to learn more about current projects and provide support.

Learn More +
Research Study for type 1 diabetes

Proactively Identifying Type 1 Diabetes

Identifying Type 1 Diabetes Development

Type 1 diabetes develops when the body mistakenly attacks and destroys insulin-producing beta cells. As the number of cells depletes, the body is unable to adequately control blood sugar levels. Researchers have been striving to find a way to prevent this destruction from occurring or to find a way to replace these cells so that the body can once again manage its own blood sugar.

A recent study took a closer look at exactly when this transformation begins to take place and beta cells begin dying off. They found that in many participants, the decline started at least six months prior to when patients would meet clinical requirements for a type 1 diabetes diagnosis. Diagnostic thresholds are currently a “fasting glucose of ≥126 mg/mL or 2-hour glucose of ≥200 mg/dL.”

The study involved 80 patients split into three categories: younger than age 11, ages 11 to 20, and older than age 20. All participants were first- or second-degree relatives of someone with type 1 diabetes and were diagnosed themselves while undergoing oral glucose tolerance tests (OGTTs) every six months. The results showed that across all age groups, C-peptide levels started declining around 12 months before diagnosis but showed the most significant changes in function in the 6 months prior to and 12 months following diagnosis.

By tracking these changes in individuals who are considered at-risk of developing type 1 diabetes, doctors may be able to catch declining beta-cell function early on and intervene with treatment before patients reach diagnostic thresholds for the disease. This could potentially be a way to prevent or slow the onset of type 1 diabetes through proactive immunotherapy.

More research is needed to further explore these findings and expand them to a larger group of participants. However, it provides researchers with insight on when type 1 diabetes may begin to develop and some changes to focus on. Diabetes Research Connection (DRC), though not involved with this study, supports early-career scientists in pursuing novel research studies around type 1 diabetes to help advance prevention and treatment efforts as well as minimizing complications, improving quality of life, and finding a cure. Learn more about current studies and how to support these projects by visiting https://diabetesresearchconnection.org.

Learn More +
Medical Technology

Helping Drive Technology Advancements

Diabetes Patients Are Helping Drive Technology Advancements

Managing type 1 diabetes is an around-the-clock job. Patients must always be aware of what their blood sugar level is, whether it is trending up or down, whether or not to administer insulin, and if they do need insulin, how much. While there have been many advancements in technology to help with monitoring and insulin administration, the development and approval process is often long and drawn out. There are a limited number of devices approved by the government for use.

Patients with type 1 diabetes have begun taking their health into their own hands and improving treatment options. There are free directions online for how patients can connect their continuous glucose monitor (CGM) and their insulin pump with their smartphone to create a closed-loop system that tracks their blood glucose and automatically administers insulin as necessary. This type of artificial pancreas is something that researchers and pharmaceutical companies have been working on for years, but to date, there is only one commercially available closed-loop system available for use in Canada.

Jonathan Garfinkel, a Ph.D. candidate in the Faculty of Arts at the University of Alberta, took his chances and used the patient-created instructions for setting up the closed-loop system two years ago, and it has been life-changing. Previously, he was having a lot of difficulty managing his blood sugar overnight, and it would drop dangerously low. With the closed-loop system, his blood sugar has become much stabler overnight, and he is not tasked with regularly doing finger pricks and figuring out insulin dosing on his own.

These advancements in technology that patients with diabetes are developing have prompted pharmaceutical companies to quicken their own pace when it comes to getting devices created and approved for commercial use. Patients are becoming increasingly more comfortable with technology and relying on smartphones, sensors, and other devices to help them stay abreast of their health.

Garfinkel himself is also working on a project to advance technology for diabetes treatment. He is in the process of developing “a more affordable glucose sensor that would sit on top of the skin, rather than being inserted subcutaneously.” It was a project he began in collaboration with Mojgan Daneshmand, an engineer and Canada Research Chair in Radio Frequency Microsystems for Communication and Sensing, who was unfortunately killed in a plane crash in January 2020. Garfinkel is continuing the work that they started together and was awarded a U of A seed grant to help.

There are so many young researchers with incredible potential who can benefit from funding that will allow them to carry out their plans and see the results. The Diabetes Research Connection provides up to $50K in funding to early-career scientists to empower them in moving forward with their novel research projects focused on type 1 diabetes. These opportunities open doors to improving the prevention, treatment, and management of type 1 diabetes, as well as improving quality of life, minimizing complications, and one day finding a cure. Learn more by visiting https://diabetesresearchconnection.org.

Learn More +
Sleep Disturbances Common with Type 1 Diabetes -Photo by Marcus Aurelius from Pexels

Sleep Disturbances with Type 1 Diabetes

Sleep Disturbances Common with T1D

Type 1 diabetes is a disease that must be monitored around the clock. When children are awake, it is easier to tell when blood sugar may be spiking too high or dropping too low. At night, this is more challenging, and it is essential to continue testing blood sugar levels to stay within the target range and administer insulin as necessary.

Children typically rely on their parents to manage their diabetes and monitor blood sugar, whether done manually or through a continuous glucose monitor (CGM). A recent study found that children who use a CGM often sleep better at night, but it is their parents who have more disturbances in their sleep due to reacting to CGM data.

As part of a larger study, researchers evaluated the sleep quality of 46 parents of children with type 1 diabetes. The children were between the ages of 2 and 5, and some used CGMs while others did not. Parents reported on the time their children went to bed, woke up, and how long they slept. The average was 10.4 hours per night. Also, all 11 families who used CGMs wore accelerometers that tracked their sleep patterns for a minimum of four nights. The accelerometer showed an average of 9.8 hours of sleep per night for children.

According to the study, “Among the full cohort, 63% of parents reported checking their child’s blood glucose levels at least a few nights per week. Parents of children using CGMs reported a higher frequency of nighttime blood glucose monitoring compared with parents of children without a CGM.”

The percentage of parents who experienced sleep disturbances concerning blood glucose monitoring was noticeably higher than the percentage of children, at 78.3% and 17% respectively. Parents of children with CGMs reported higher levels of sleep disturbance, especially when the child’s diabetes was more difficult to manage. Additional research with a larger group of participants across a longer period of time is necessary to better understand the impact of diabetes management on sleep for parents and children.

It is important for physicians to keep in mind not just the impact a CGM or other device could have on the child’s health and quality of life, but also on the parent. Parents benefit from having proper support systems in place and information to help them cope with the challenges of managing their child’s type 1 diabetes.

Diabetes Research Connection, though not involved in this study, is committed to supporting early-career scientists focused on studying type 1 diabetes and ways to improve prevention, treatment, and quality of life, as well as one day finding a cure. One hundred percent of donations go directly to the scientists for their research. To learn more about current projects and how to help, visit https://diabetesresearchconnection.org.

Learn More +
Researcher

Enhancing Protection for Islets

Enhancing Protection for Islets Following Transplantation

One treatment approach for type 1 diabetes that researchers have been experimenting with and refining for more than 20 years is islet transplantation. The goal is to take insulin-producing islets from cadavers (or another source) and transplant them into individuals with type 1 diabetes so that these cells will thrive and allow the body to begin producing insulin once again.

A common challenge with this approach is protecting the cells from immune system attack or cell death from lack of oxygen. A recent study has found a way to overcome some of these obstacles by encapsulating the islets in a jelly-like substance made of collagen. This helps create a scaffolding that will not initiate an immune response yet contains the islets while allowing them to grow new blood vessels that will ultimately provide them with oxygen. Since this blood vessel regrowth can take time, the researchers also injected the scaffolding with calcium peroxide. As the calcium peroxide breaks down, it releases oxygen which is used to keep the cells alive as they settle in and begin working.

In traditional organ transplantation, the organ is surgically connected to the circulatory system meaning that the organ automatically begins receiving the oxygen and nutrients it needs for survival. Islet transplants do not work this way since the cells are not a solid organ. In addition, the cells are typically injected into the liver rather than the pancreas where they would normally occur. There is a greater risk of the pancreas having a negative reaction and destroying the islets than the liver.

The researchers tested this new bioscaffold in diabetic mice. Some mice received islets on their own, some received islets in the bioscaffold, and some received islets and calcium peroxide in the bioscaffold. The diabetic mice who received the islets and calcium peroxide demonstrated greater blood glucose control over four weeks than the other two groups. The team is now looking at the possibility of injecting the scaffolding with stem cells as well to further enhance islet survival and function.

These types of advancements in treatment are encouraging when it comes to type 1 diabetes. It is expected that the U.S. Food and Drug Administration (FDA) will approve islet transplantation as a valid treatment for T1D, rather than an experimental treatment, this year. This could increase the number of options available to patients for effectively managing the disease.

Diabetes Research Connection continues to stay abreast of changes in the field and provides critical funding for early-career scientists pursuing novel research around T1D. Learn more about current projects and how to support these efforts by visiting https://diabetesresearchconnection.org.

Learn More +
Diabetes Pills

Reduced Out-of-Pocket Insulin Costs for Seniors Through Medicare

Out-of-Pocket Insulin Costs for Seniors

The cost of buying insulin can quickly add up, but this medication is life-sustaining for individuals with type 1 diabetes. Many seniors are on a fixed income, and some may struggle to afford the out-of-pocket costs for insulin, which can lead to rationing their supply. This can be incredibly dangerous to their health.

The Centers for Medicare & Medicaid Services (CMS) recently announced that it would implement measures to help curb these costs for seniors. Many Medicare Part D prescription drug plans and Medicare Advantage plans with prescription drug coverage will now be offering lower insulin costs to seniors, capping the copay at $35 for a month’s supply. This is part of the new Part D Senior Savings Model and will cover “both pen and vial dosage forms for rapid-acting, short-acting, intermediate-acting, and long-acting insulins.”

Insulin manufacturers and Part D sponsors are working together to offer this market-based solution that enables them to provide deeper discounts to seniors and fixed, predictable copays in the coverage gap. According to CMS, “beneficiaries who use insulin and join a plan participating in the model could see an average out-of-pocket savings of $446, or 66 percent, for their insulins, funded in part by manufacturers paying an estimated additional $250 million of discounts over the five years of the model.”

Seniors will be able to go on to the CMS website and compare their prescription drug plan options to find a participating sponsor and plan that fits their needs. Enrollment would begin in the fall for coverage starting on January 1, 2021. There have also been numerous actions that have been taken in response to COVID-19 to support individuals with type 1 diabetes in accessing and affording insulin.

It is encouraging to see drug manufacturers and insurance companies making changes to improve access and affordability of life-sustaining medications such as insulin. Diabetes Research Connection (DRC) will continue to stay abreast of these trends and how they impact diabetes management. DRC provides critical funding for researchers focused on type 1 diabetes to find a cure and improve prevention and treatment options as well as the quality of life. Click to learn more about current projects and provide support.

Learn More +
Laboratory Image

Preserving Endogenous Insulin Production

Preserving Endogenous Insulin Production in Newly Diagnosed Type 1 Diabetes Patients

A hallmark of type 1 diabetes is the body loses its ability to naturally produce enough (or any) insulin to effectively manage blood glucose levels. This is due to the mistaken destruction of insulin-producing beta cells by the immune system, a process that researchers are continually learning more about. In many cases, when type 1 diabetes (T1D) is first diagnosed, there is a short window of time (up to about six months) where the body still creates insulin, but not enough to meet demand.

A recent study explored a new way to try to preserve endogenous insulin production and reduce the amount of insulin newly diagnosed patients required. The study involved 84 patients ages 6 to 21 who had been diagnosed with T1D within 100 days of the start of the trial. Approximately two-thirds of participants were given the drug golimumab, while the other one-third received a placebo. Golimumab is an anti-tumor-necrosis-factor (TNF) therapy that is already approved by the Food and Drug Administration (FDA) for the treatment of rheumatoid arthritis, ulcerative colitis, and other autoimmune conditions. It has not yet been approved for use in patients with T1D.

The patients who received golimumab self-administered the drug via injection every two weeks. Results showed that these patients achieved markedly better glycemic control that patients receiving the placebo. After 52 weeks of treatment, “41.4% of participants receiving golimumab had an increase or less than 5% decrease in C-peptide compared to only 10.7% in the placebo group.”

Furthermore, patients who were still in the “honeymoon phase” of their diabetes, or the first 3-6 months after diagnosis where there is still some endogenous insulin production and not as much injected insulin is needed, also showed improvement once transitioning out this phase and continuing to take golimumab. Those patients showed a smaller increase in injected insulin than the placebo group requiring just 0.07 units per kilogram more per day versus 0.24 units per kilogram per day respectively. Another notable improvement is that patients between the ages of 6 and 18 experienced 36% fewer episodes of level 2 hypoglycemia, a condition that can be potentially life-threatening and negatively impact the quality of life.

Since golimumab is already FDA-approved for other conditions, these phase 2 study results play an important role in moving the process forward to show that it may be an effective treatment for T1D as well. This therapy may be able to help newly diagnosed patients retain some of their body’s natural insulin-producing abilities and decrease the amount of injected insulin needed to maintain good glycemic control.

Golimumab may become another option for patients with type 1 diabetes in the future and change how the disease is managed when caught and treated early on. It is encouraging to see new ways to preserve beta-cell function. Diabetes Research Connection (DRC) is interested to see how this study unfolds and whether golimumab is approved for the treatment of type 1 diabetes.

Although not involved in this study, DRC supports early-career scientists in pursuing studies like these and other projects related to preventing and curing T1D as well as minimizing complications and improving the quality of life for individuals living with the disease. Scientists can receive up to $50K in funding to advance their research. Click to learn more about current projects and provide support.

Learn More +
Mark A

I Believe The Mission Of The Diabetes Research Connection Is Vital!

“Entering my fourth decade of type 1 diabetes research, it is quite remarkable to look back and see how research seeking to identify answers to the questions of how this disease develops and how the disorder could be cured have changed. No one could have envisioned the difficulty of obtaining research funding, especially for young people. For these reasons, I believe the mission of the Diabetes Research Connection is vital! It offers hope for the future of both those with type 1 diabetes and young investigators committed to making a major change possible. I fully support DRC and am committed to seeing it prosper.”
Mark Atkinson, Ph.D.
Director, University of Florida Diabetes Institute

Learn More +
Agata Jur - UMass

We Need To Invest In Young Scientists

“There is a need for increased collaborative efforts to eradicate diabetes. We need to invest in young scientists with new and fresh ideas that are willing to dedicate their career to study diabetes. Federal funding for young investigators in basic research is getting harder to acquire, so private funding is critical to invest in novel ideas to help young scientists in their quest for the cure.”
Agata Jurczyk, Ph.D.
University of Massachusetts Medical School

Learn More +

OUR PROJECTS

See our approved research projects and campaigns.

Role of the integrated stress response in type 1 diabetes pathogenesis
In individuals with type 1 diabetes (T1D), the insulin-producing beta cells are spontaneously destroyed by their own immune system. The trigger that provokes the immune system to destroy the beta cells is unknown. However, accumulating evidence suggest that signals are perhaps first sent out by the stressed beta cells that eventually attracts the immune cells. Stressed cells adapt different stress mitigation systems as an adaptive response. However, when these adaptive responses go awry, it results in cell death. One of the stress response mechanisms, namely the integrated stress response (ISR) is activated under a variety of stressful stimuli to promote cell survival. However, when ISR is chronically activated, it can be damaging to the cells and can lead to cell death. The role of the ISR in the context of T1D is unknown. Therefore, in this DRC funded study, we propose to study the ISR in the beta cells to determine its role in propagating T1D.
Wearable Skin Fluorescence Imaging Patch for the Detection of Blood Glucose Level on an Engineered Skin Platform
zhang
A Potential Second Cure for T1D by Re-Educating the Patient’s Immune System
L Ferreira
Validating the Hypothesis to Cure T1D by Eliminating the Rejection of Cells From Another Person by Farming Beta Cells From a Patient’s Own Stem Cells
Han Zhu
Taming a Particularly Lethal Category of Cells May Reduce/Eliminate the Onset of T1D
JRDwyer 2022 Lab 1
Can the Inhibition of One Specific Body Gene Prevent Type 1 Diabetes?
Melanie
Is Cholesterol Exacerbating T1D by Reducing the Functionality and Regeneration Ability of Residual Beta Cells?
Regeneration Ability of Residual Beta Cells
A Call to Question… Is T1D Caused by Dysfunctionality of Two Pancreatic Cells (β and α)?
Xin Tong
Novel therapy initiative with potential path to preventing T1D by targeting TWO components of T1D development (autoimmune response and beta-cell survival)
flavia pecanha