DRC & Research News

This page shares the latest news in T1D research and DRC’s community.

Get the most recent diabetes research news, delivered straight to your inbox

ETH Researchers T1D

New Weapon Against Diabetes

Original article published by ETH Zurich on December 1, 2016. Click here to read the original article.

Researchers have used the simplest approach yet to produce artificial beta cells from human kidney cells. Like their natural model, the artificial cells act as both sugar sensors and insulin producers.

Researchers led by ETH Professor Martin Fussenegger at the Department of Biosystems Science and Engineering (D-BSSE) in Basel have produced artificial beta cells using a straightforward engineering approach. These pancreatic cells can do everything that natural ones do: they measure the glucose concentration in the blood and produce enough insulin to effectively lower the blood sugar level. The ETH researchers presented their development in the latest edition of the journal Science.

Previous approaches were based on stem cells, which the scientists allowed to mature into beta cells either by adding growth factors or by incorporating complex genetic networks.

For their new approach, the ETH researchers used a cell line based on human kidney cells, HEK cells. The researchers used the natural glucose transport proteins and potassium channels in the membrane of the HEK cells. They enhanced these with a voltage-dependent calcium channel and a gene for the production of insulin and GLP-1, a hormone involved in the regulation of the blood sugar level.

Voltage switch causes insulin production

In the artificial beta cells, the HEK cells’ natural glucose transport protein carries glucose from the bloodstream into the cell’s interior. When the blood sugar level exceeds a certain threshold, the potassium channels close. This flips the voltage distribution at the membrane, causing the calcium channels to open. As calcium flows in, it triggers the HEK cells’ built-in signalling cascade, leading to the production and secretion of insulin or GLP-1.

The initial tests of the artificial beta cells in diabetic mice revealed the cells to be extremely effective: “They worked better and for longer than any solution achieved anywhere in the world so far,” says Fussenegger. When implanted into diabetic mice, the modified HEK cells worked reliably for three weeks, producing sufficient quantities of the messengers that regulate blood sugar level.

Helpful modelling

In developing the artificial cells, the researchers had the help of a computer model created by researchers working under Jörg Stelling, another professor in ETH Zurich’s Department of Biosystems Science and Engineering (D-BSSE). The model allows predictions to be made of cell behaviour, which can be verified experimentally. “The data from the experiments and the values calculated using the models were almost identical,” says Fussenegger.

He and his group have been working on biotechnology-based solutions for diabetes therapy for a long time. Several months ago, they unveiled beta cells that had been grown from stem cells from a person’s fatty tissue. This technique is expensive, however, since the beta cells have to be produced individually for each patient. The new solution would be cheaper, as the system is suitable for all diabetics.

Market-readiness is a long way off

It remains uncertain, though, when these artificial beta cells will reach the market. They first have to undergo various clinical trials before they can be used in humans. Trials of this kind are expensive and often last several years. “If our cells clear all the hurdles, they could reach the market in 10 years,” the ETH professor estimates.

Diabetes is becoming the modern-day scourge of humanity. The International Diabetes Federation estimates that more than 640 million people worldwide will suffer from diabetes by 2040. Half a million people are affected in Switzerland today, with 40,000 of them suffering from type 1 diabetes, the form in which the body’s immune system completely destroys the insulin-producing beta cells.
[su_button url=”https://www.ethz.ch/en/news-and-events/eth-news/news/2016/12/artificial-beta-cells.html?elqTrackId=3118751de0d340b8bf7c42cba3a3a7d2&elq=3ba510d3772545b28e0cfdf8c559795e&elqaid=17762&elqat=1&elqCampaignId=10602″ target=”blank” style=”flat” background=”#64b243″ size=”6″ center=”yes” radius=”5″ icon=”icon: angle-right”]Continue Reading[/su_button]

Learn More +
alberto hayek

Meet the DRC Board: Alberto Hayek, M.D.

At the Diabetes Research Connection, our passion is working together with the scientific community to find a way to treat, cure and prevent type 1 diabetes, and our board is dedicated to helping achieve our vision.

2016 has been a monumental year for us, as we’ve raised more money than ever before for early-career scientists’ T1D research. One of our core values is to build a strong connection between the board and our supporters. Thus, we’ve interviewed members of our board to find out more about the impact T1D has had on their lives, why they choose to work with DRC and much more.

First up, get to know one of DRC’s founders, Dr. Alberto Hayek.

Alberto Hayek, M.D., President of DRC

Dr. Hayek is the Scientific Director at San Diego’s Scripps Whittier Institute for Diabetes and Professor Emeritus of Pediatrics at UCSD. He is a world-renowned diabetes expert in pancreatic islet research and experimental cell replacement therapies for T1D.

We asked Dr. Hayek a few questions to help our donors get to know him better.

How have you been affected by T1D?

Taking care of children with T1D gave me a first-hand glimpse of the struggles this disease causes for patients and their families.

What is the most rewarding part of serving on the DRC board for you personally?

The opportunity to provide funding for junior investigators in T1D as they take their first steps for independent thinking in research and care has been tremendously rewarding.

What is your favorite holiday tradition, related to T1D or not?

I spend a day during Christmas with my grandchildren, ages 3 and 6, making sandwiches for homeless people in San Diego.

Once again, we want to extend a heartfelt thank you to all our donors for helping to make 2016 such a successful year for DRC, and helping to fund innovative T1D research. We’re looking forward to all that 2017 will bring, and we’re hopeful that a year from now we’ll be even closer to eradicating T1D.

Learn More +
diabetes research

Economic 3D-Printing Approach for Transplantation of Human Stem Cell-Derived β-Like Cells

Original article published by IOP Science on December 1, 2016. Click here to read the original article.

Abstract

Transplantation of human pluripotent stem cells (hPSC) differentiated into insulin-producing βcells is a regenerative medicine approach being investigated for diabetes cell replacement therapy. This report presents a multifaceted transplantation strategy that combines differentiation into stem cell-derived β (SC-β) cells with 3D printing. By modulating the parameters of a low-cost 3D printer, we created a macroporous device composed of polylactic acid (PLA) that houses SC-β cell clusters within a degradable fibrin gel. Using finite element modeling of cellular oxygen diffusion-consumption and an in vitro culture system that allows for culture of devices at physiological oxygen levels, we identified cluster sizes that avoid severe hypoxia within 3D-printed devices and developed a microwell-based technique for resizing clusters within this range. Upon transplantation into mice, SC-β cell-embedded 3D-printed devices function for 12 weeks, are retrievable, and maintain structural integrity. Here, we demonstrate a novel 3D-printing approach that advances the use of differentiated hPSC for regenerative medicine applications and serves as a platform for future transplantation strategies.

[su_button url=”http://iopscience.iop.org/article/10.1088/1758-5090/9/1/015002/meta?elqTrackId=96062d779f46499eb7cc18d9ab30d665&elq=3d599e01edda49df92afa531a8a717ae&elqaid=17717&elqat=1&elqCampaignId=10609″ target=”blank” style=”flat” background=”#64b243″ size=”6″ center=”yes” radius=”5″ icon=”icon: angle-right”]Continue Reading[/su_button]

Learn More +
holiday travel

Holiday Travel Tips for Those With T1D

The holiday season is in full swing, and many of us will be traveling this month to visit friends, family and loved ones. For those with type 1 diabetes (T1D), though, holiday travels may require a bit more planning. Below we’ve outlined a few things to keep in mind when planning a trip if you or a loved one you are traveling with has T1D. Following these tips will help your travels go smoothly, ensuring a joyous time for all.

Packing Your Medication and Supplies

Whether you’re traveling across the state for a long weekend or across the country for a full week, you’ll need to be strategic when packing your medication and other supplies. Make sure you bring enough of your medication so you’re prepared for any situation that may arise; many find that packing twice as much as they think they’ll need is a safe option. If you’ll be checking any luggage, keep your medicine and anything else you will need in your carry-on, so that you have it if your bags get lost.

In your carry-on bag, make sure you have:

  • Insulin and syringes
  • Blood-testing supplies and extra batteries
  • Any other medications you may need
  • An ID, including something that identifies you as having T1D
  • A small snack and candy or some form of sugar to treat hypoglycemia

As you’re packing, be thinking of where you’ll store your supplies upon arrival. In particular, don’t store your insulin somewhere very hot or very cold, such as the trunk of a car.

Preparing for an Emergency if You’re Abroad

Anyone traveling to another country should have a plan in place in case of a medical emergency, but this is especially important for those with T1D.

If you would like to get a list of English-speaking doctors at your destination before you leave, we suggest contacting the International Association for Medical Assistance to Travelers. If something happens while you’re abroad and you’re unsure of where to go, contact your local embassy for assistance.

Of course, preventing an emergency is better than preparing for one. This goes without saying, but check your blood glucose levels frequently, and be mindful of crossing time zones when you’re planning the timing of your injections.

Keep Your Medical ID With You

It’s always a good idea to be wearing a medical ID identifying you as someone with T1D, but this can become even more important when traveling. In the event of an emergency, your ID will let first responders, doctors and nurses know that you have T1D and provide information about how you manage it, as well as information about allergies and other pieces of your medical history.

Traditionally, these medical IDs are worn as a bracelet or necklace, and usually consist of a piece of metal with information etched into it. However, modern technology has to lead to more detailed medical IDs with QR codes, URLs and more that can help emergency responders and medical personnel access all your necessary health records.

For more tips and insights for living with type 1 diabetes, subscribe to our newsletter.

Learn More +
insulin

“Artificial Pancreas” Is Approved

Original article published by The JAMA Network on October 4, 2016. Click here to read the original article.

A new device that automatically monitors blood glucose levels and adjusts insulin levels has received FDA approval. The device, manufactured by Dublin-based Medtronic PLC, is the first such system to gain the agency’s blessing.

The new MiniMed 670G hybrid closed-loop system is intended for people aged 14 years or older who have type 1 diabetes. Because it operates with a smart algorithm that learns an individual’s insulin needs and delivers appropriate basal doses 24 hours a day, little user input is required. Patients who use the system will only have to enter their mealtime carbohydrates, accept bolus correction recommendations, and periodically calibrate the sensor.

[su_button url=”http://jamanetwork.com/journals/jama/article-abstract/2584035″ target=”blank” style=”flat” background=”#64b243″ size=”6″ center=”yes” radius=”5″ icon=”icon: angle-right”]Continue Reading[/su_button]

Learn More +

OUR PROJECTS

See our approved research projects and campaigns.

Role of the integrated stress response in type 1 diabetes pathogenesis
In individuals with type 1 diabetes (T1D), the insulin-producing beta cells are spontaneously destroyed by their own immune system. The trigger that provokes the immune system to destroy the beta cells is unknown. However, accumulating evidence suggest that signals are perhaps first sent out by the stressed beta cells that eventually attracts the immune cells. Stressed cells adapt different stress mitigation systems as an adaptive response. However, when these adaptive responses go awry, it results in cell death. One of the stress response mechanisms, namely the integrated stress response (ISR) is activated under a variety of stressful stimuli to promote cell survival. However, when ISR is chronically activated, it can be damaging to the cells and can lead to cell death. The role of the ISR in the context of T1D is unknown. Therefore, in this DRC funded study, we propose to study the ISR in the beta cells to determine its role in propagating T1D.
Wearable Skin Fluorescence Imaging Patch for the Detection of Blood Glucose Level on an Engineered Skin Platform
zhang
A Potential Second Cure for T1D by Re-Educating the Patient’s Immune System
L Ferreira
Validating the Hypothesis to Cure T1D by Eliminating the Rejection of Cells From Another Person by Farming Beta Cells From a Patient’s Own Stem Cells
Han Zhu
Taming a Particularly Lethal Category of Cells May Reduce/Eliminate the Onset of T1D
JRDwyer 2022 Lab 1
Can the Inhibition of One Specific Body Gene Prevent Type 1 Diabetes?
Melanie
Is Cholesterol Exacerbating T1D by Reducing the Functionality and Regeneration Ability of Residual Beta Cells?
Regeneration Ability of Residual Beta Cells
A Call to Question… Is T1D Caused by Dysfunctionality of Two Pancreatic Cells (β and α)?
Xin Tong
Novel therapy initiative with potential path to preventing T1D by targeting TWO components of T1D development (autoimmune response and beta-cell survival)
flavia pecanha