DRC & Research News

This page shares the latest news in T1D research and DRC’s community.

Get the most recent diabetes research news, delivered straight to your inbox

Diabetes Researching

Exploring the Impact of Type 1 Diabetes on COVID-19

For the past several months, the world has been struggling to contain the spread of COVID-19 and effectively treat patients diagnosed with this disease. It is a new strain of coronavirus that researchers continue to learn more about every day. One thing that is known about the virus is that individuals with underlying health conditions are at increased risk of developing severe illness and complications.

One such underlying health condition that researchers are paying closer attention to is type 1 diabetes (T1D). Preliminary research from small studies appear to show that individuals with T1D are at increased risk of poorer health outcomes than those with type 2 diabetes (T2D) or no history of diabetes. A recent study of 64 individuals with T1D and confirmed or suspected COVID-19 in the United States found that “more than 50% of all cases reported hyperglycemia, and nearly one-third of patients experienced DKA.” Both hyperglycemia and diabetic ketoacidosis (DKA) can be life-threatening conditions if not properly treated in time.

Furthermore, research released from the United Kingdom’s National Health Service (NHS) revealed that hospitalized individuals with T1D are significantly more likely to die from COVID-19 than those with T2D. Scientists believe that hyperglycemia may enhance the immune system’s overresponse thereby exacerbating the impact of severe infections.

Being hospitalized can make it more difficult for individuals with T1D to maintain glycemic control because their body is already trying to fight off infection, and they may not have the mental clarity or ability to effectively monitor their own blood sugar. Diabetes Research Connection (DRC) sponsored a study by Addie Fortmann, Ph.D., regarding the use of continuous glucose monitors (CGMs) in hospital settings, which found that these devices were pivotal to glycemic control. As a result, Scripps deployed this technology across all of their hospitals to better support diabetes management.

But not every hospital in the United States allows patients to use their CGM while admitted, and not all staff is adequately trained in diabetes care. This can complicate things for patients struggling with T1D as well as COVID-19 and contribute to poorer health outcomes. Not only are patients fighting against the effects of COVID-19 including fever, shortness of breath, dry cough, nausea, body aches, and fatigue, if their blood sugar should go too high or too low, this can add to more symptoms and complications. In both patients with confirmed and suspected COVID-19 as well as T1D, DKA was the most prevalent adverse outcome.

It is essential that attention is given to managing underlying conditions such as diabetes in order to provide more effective treatment tailored to patient needs. Since 2012, the DRC has been providing critical funding for early-career scientists pursuing novel, peer-reviewed research related to type 1 diabetes. This work is essential to advancing understanding of the disease, improving prevention strategies and treatment options, minimizing complications, enhancing quality of life, and working toward a cure. Learn more about current projects and how to support these efforts by visiting https://diabetesresearchconnection.org.

Learn More +
Diabetes and Kids

Taking Steps to Prevent Diabetic Ketoacidosis in Pediatric Patients with Type 1 Diabetes

There are many complications that can occur with type 1 diabetes, but one of the most serious is diabetic ketoacidosis (DKA). When the body does not produce (or have) enough insulin to help convert sugar to energy, it begins breaking down fat and using that as fuel instead. However, this releases acid known as ketones into the bloodstream, in turn leading to DKA when levels become too high.

A recent study found that DKA among newly diagnosed pediatric patients with type 1 diabetes is alarmingly high among patients around the world. During an 11-year study spanning from 2006 to 2016, researchers found that out of 59,000 children who had been diagnosed with T1D, 29.9% presented with DKA at diagnosis. The study examined data from children in Austria, the Czech Republic, Germany, Italy, Luxembourg, Norway, Slovenia, Sweden, Wales, Australia, New Zealand, and the United States.

Of these countries, prevalence rates in Luxembourg and Italy were found to be the highest at 43.8% and 41.2%, respectively, while Sweden and Denmark had the lowest rates at 19.5% and 20.8%, respectively. DKA at diabetes diagnosed increased over the 11-year study in the United States, Australia, and Germany. Overall, DKA tended to impact a higher proportion of females than males, except in Wales.

In order to help reduce risk of DKA at diagnosis, the researchers encourage improved screenings beginning with young children. For example, Bavaria, Germany tests for islet autoantibodies as part of a public health screening for children between the ages of 2 and 5. Studies showed that their prevalence of DKA at diagnosis came in at less than 5%. Increased screenings and education may be beneficial in raising awareness and catching potential problems early on before DKA develops.

Though not involved with this study, the Diabetes Research Connection (DRC) is committed to improving understanding, prevention, and treatment of type 1 diabetes by providing critical funding for novel, peer-reviewed research studies by early-career scientists. Find out how to support these efforts and learn more about current projects by visiting https://diabetesresearchconnection.org.

Learn More +
Diabetes and Babies

Could Benefits of Early Screening for Type 1 Diabetes Outweigh Costs?

Advances in science have improved the ability to identify warning signs for type 1 diabetes (T1D) early on. For instance, scientists can detect the destruction of insulin-producing beta cells before noticeable signs of diabetes emerge or conditions such as diabetic ketoacidosis (DKA) occur. They have also determined other key changes and factors that may put an individual at increased risk.

A recent study found that conducting health screenings on children can increase awareness regarding their risk of developing T1D, help prevent DKA occurrences, and encourage individuals to take better care of their health to reduce complications and impact of the disease.

Researchers at the Barbara Davis Center for Diabetes at the University of Colorado School of Medicine created the Autoimmunity Screening for Kids (ASK) study to determine if this type of health screening is beneficial. While it can be costly to conduct widespread screenings for children between the ages of 1 and 17, they found that there are a host of benefits such as those mentioned above. In addition, the long-term cost savings can quickly make up for screening expenses because when individuals know their risk and learn how to better manage their T1D, it can reduce complications and associated healthcare costs.

Now they are looking at how to effectively implement screenings, what the practice would look like, what the age schedule for screenings should be, and who would benefit most. Early detection can play an integral role in managing T1D and improving quality (and quantity) of life.

Diabetes research occurs at all stages of the disease, from the time patients are pre-symptomatic to those with the most serious complications. It covers everything from screenings to closed-loop systems for treatment to understanding the cellular and molecular impact of the disease. Diabetes Research Connection is committed to supporting a wide range of T1D research by providing critical funding to early-career scientists. Learn more about current projects and how to help by visiting https://diabetesresearchconnection.org.

Learn More +
Diabetes Researching

Is Cannabis Use Safe for Individuals with Type 1 Diabetes?

Cannabis use has been a hot topic in recent years with more states legalizing recreational use in addition to medicinal use. Just like any drug, cannabis has its risks and benefits which can vary from person to person depending on their individual situation.

A recent study looked at how cannabis use may impact individuals with type 1 diabetes in regard to diabetic ketoacidosis (DKA). DKA occurs when the body does not make enough insulin and ketones build up in the bloodstream due to the breakdown of fats instead of sugars.

The study found that moderate cannabis users with type 1 diabetes are twice as likely to develop DKA than non-users. Researchers used data from 932 adults who participate in the T1D Exchange clinic registry (T1DX).

It is important for individuals with T1D to understand the risks associated with using cannabis and how it can potentially affect their overall health and well-being, especially in regard to diabetes management. DKA can develop very quickly and can be potentially fatal if left untreated.

Though not involved in this study, the Diabetes Research Connection (DRC) supports early career scientists in pursuing novel research studies to advance understanding of T1D as well as improve diagnosis, treatment, and prevention strategies. Learn more about current projects and how to support these efforts by visiting http://diabetesresearchconnection.org.

 

Learn More +
Diabetes Researching

Arielle Schube World Diabetes Story

My story began during the summer of 2016, the summer before my freshman year of high school. In July, I went to camp for three weeks in San Bernardino, California. The first week of camp I went on a four-day hiking trip to Sedona, Arizona in 100-degree weather. During the hiking trip, I felt a slight cold coming on, I assumed it was from heat and physical exhaustion. When I returned to camp after the hiking trip, I found myself in my own personal hell. At night, I lay on the cold, bathroom floor tile because my body was too hot for my bed and I was too weak to climb down from the top bunk every time I felt the urge to throw up. I could not take it anymore. I dragged myself to the nurse’s office and begged the nurse to take me to a hospital. After hours of convincing the camp nurse that something serious was happening to me, she finally agreed to take me down the mountain to the local hospital.

Not only was I screaming and moaning the entire drive down because the pain endured, but I was also experiencing small blackouts. By the time all the blood tests were completed, I was barely conscious. Soon, a doctor approached me and said, “You have type 1 diabetes.” I looked at him, then my counselor, and then the doctor again. I almost wanted to laugh and say, “What? This is a joke, this isn’t happening, right?” Then I looked at my counselor and said, “Where are my parents?”

The only memory I have after the doctor gave me the devastating news is lying in a helicopter with paramedics on either side of me. I spent the next five days in the hospital, the first two days in the ICU. When I was diagnosed, I was in a diabetic coma. I had Diabetic Ketoacidosis (DKA), a serious life-threatening complication of diabetes where the body produces excess ketones and if left untreated, can be fatal. My blood sugar was over 800 mg/dL and my blood tests showed that I’d been living with type 1 diabetes (T1D) for three months prior to my diagnosis. At the age of 13 years old I advocated for myself, for my life and for my future. If I did not have the will to fight, it is very likely that I would not be here today. My near-death experience has changed my life and will continue to shape my daily actions, thoughts and feelings. My desire to live life to the fullest and courage to speak publicly about my disease is what motivates me every day to push through the difficult days living with T1D.

Learn More +

OUR PROJECTS

See our approved research projects and campaigns.

Role of the integrated stress response in type 1 diabetes pathogenesis
In individuals with type 1 diabetes (T1D), the insulin-producing beta cells are spontaneously destroyed by their own immune system. The trigger that provokes the immune system to destroy the beta cells is unknown. However, accumulating evidence suggest that signals are perhaps first sent out by the stressed beta cells that eventually attracts the immune cells. Stressed cells adapt different stress mitigation systems as an adaptive response. However, when these adaptive responses go awry, it results in cell death. One of the stress response mechanisms, namely the integrated stress response (ISR) is activated under a variety of stressful stimuli to promote cell survival. However, when ISR is chronically activated, it can be damaging to the cells and can lead to cell death. The role of the ISR in the context of T1D is unknown. Therefore, in this DRC funded study, we propose to study the ISR in the beta cells to determine its role in propagating T1D.
Wearable Skin Fluorescence Imaging Patch for the Detection of Blood Glucose Level on an Engineered Skin Platform
zhang
A Potential Second Cure for T1D by Re-Educating the Patient’s Immune System
L Ferreira
Validating the Hypothesis to Cure T1D by Eliminating the Rejection of Cells From Another Person by Farming Beta Cells From a Patient’s Own Stem Cells
Han Zhu
Taming a Particularly Lethal Category of Cells May Reduce/Eliminate the Onset of T1D
JRDwyer 2022 Lab 1
Can the Inhibition of One Specific Body Gene Prevent Type 1 Diabetes?
Melanie
Is Cholesterol Exacerbating T1D by Reducing the Functionality and Regeneration Ability of Residual Beta Cells?
Regeneration Ability of Residual Beta Cells
A Call to Question… Is T1D Caused by Dysfunctionality of Two Pancreatic Cells (β and α)?
Xin Tong
Novel therapy initiative with potential path to preventing T1D by targeting TWO components of T1D development (autoimmune response and beta-cell survival)
flavia pecanha