Diabetes Research News

Get the most recent diabetes research news, delivered straight to your inbox

Targeting Stem Cell-Generated Beta Cells for Type 1 Diabetes Treatment

In developing more effective treatment methods for type 1 diabetes, several approaches have targeted the disease at a cellular level. Scientists know that, on the most basic level, the disease stems from the destruction of insulin-producing beta cells. However, they are unsure exactly what causes the body to mistakenly attack and destroy these cells. There have been many studies looking at how to reintroduce or stimulate these beta cells within the body in order to produce insulin naturally, but this is a difficult process and one that is hard to sustain.

A recent study may have found a way to improve the number and quality of beta cells produced for cell replacement therapy. The differentiation of human pluripotent stem cells into targeted beta cells is a long, complex process that can take weeks. Even after the process is finished, there is an assortment of cells that have been produced because not all cells differentiate as desired. In addition, not all beta cells are fully functional.

Researchers found that by adding CD77, a monoclonal antibody, they can better control the differentiation of cells into specific pancreatic progenitors. Having these pancreatic progenitors present at the start of the differentiation process may lead to higher quality beta cells that are more responsive to glucose and have improved insulin secretion abilities. In addition, it may help direct differentiation meaning a more homogenous group of cells is created, which is beneficial for cell replacement therapy. Having more of the desired type of cell can also save time and money.

Being able to better control the differentiation process may improve beta cell replacement therapy options for individuals with type 1 diabetes. Developing ways for the body to once again generate its own insulin and manage blood glucose levels could change the way the disease is managed. This study was a partnership between Helmholtz Zentrum München, the German Center for Diabetes Research (DZD), Technical University of Munich (TUM), and Miltenyi Biotec.

Though not involved with this study, the Diabetes Research Connection stays abreast of the latest advancements in the field and how emerging research may impact the diagnosis, treatment, and management of type 1 diabetes, as well as the search for a cure. As more about the disease is understood, researchers can build on this information. The DRC provides critical funding for early-career scientists whose research is focused on type 1 diabetes. To learn more and support these efforts, visit https://diabetesresearchconnection.org.

Learn More +

Could Vitamin D Help Protect Against Type 1 Diabetes?

One trend that researchers have noticed in type 1 diabetes (T1D) is that individuals with this disease tend to have some level of vitamin D deficiency. This impacts vitamin D receptor (VDR) expression, which may contribute to the development of diabetes.

A recent study found that higher levels of VDR may actually protect insulin-producing pancreatic beta cells and preserve some of their mass and function. They also found that as circulating glucose levels decreased, so did VDR levels. Maintaining a stable level of vitamin D may help counteract the disease.

Researchers are investigating the potential effectiveness of using vitamin D supplements as a prevention and treatment strategy for type 1 diabetes, and it may be beneficial for type 2 diabetes as well. They need to develop a clearer understanding of the negative regulation of VDR in individuals with the disease and how to improve VDR levels to a point where they would be more protective.

This study was conducted on mouse models, so it would need to be tested in humans as well to see if the same findings are true. However, this could be a step toward proactively reducing risk of T1D and protecting insulin-producing beta-cell function and mass. Researchers are continuing to learn more about VDR expression and its relationship to diabetes.

Diabetes Research Connection, though not involved with this study, is committed to supporting early-career scientists pursuing novel research on type 1 diabetes in order to expand the body of knowledge and help prevent or cure the disease in addition to reducing complications and improving quality of life for those living with the disease. Scientists are learning more every day. To support these efforts and find out more about current projects, visit https://diabetesresearchconnection.org.

Learn More +

Supporting Diabetes Management Via Drone

Type 1 diabetes (T1D) affects people from all walks of life around the world. A challenge in managing the disease is regular access to healthcare and necessary supplies. Healthcare providers in Ireland recognized the impact of this problem even more when natural disasters such as snowstorms, hurricanes, and flooding made it difficult for patients to reach clinics for their appointments or to get medications.

As a result, researchers turned to technology as a way to potentially help patients receive the care they need. They spent more than a year working out the logistics and regulatory compliance of using drones to deliver supplies to individuals in remote areas or those cut off from access following natural disasters or other incidents such as COVID-19. The researchers had to ensure that when using the drone, they were following all aviation and aerospace regulations, as well as medical and safety regulations.

The first flight traveled around 20 km each way going from Galway, Ireland, to the Aran Islands on September 13. The Wingcopter 178 drone delivered insulin from a pharmacy to a patient’s clinician and picked up a blood sample for remote testing of HbA1c levels. This test flight demonstrated that autonomous delivery of insulin is possible.

There was a significant amount of planning, research, and collaboration that went into making the drone delivery possible, but it is a starting point for making this technology available in healthcare. The researchers needed to have backup plans in place for each step of the process, and they worked closely with a multidisciplinary team including aviation and medication regulators.

However, this successful test flight is a stepping stone toward making drone delivery a reality for patients with diabetes. This could allow patients to continue receiving life-saving insulin and other supplies even when they are unable to make it out of their home. Diabetes does not take a break during pandemics or adverse events, and there are patients who live in rural communities where access to healthcare is a challenge.

Diabetes Research Connection (DRC) is excited to see how technology continues to improve and whether drone delivery becomes a feasible option as part of diabetes management and healthcare in general. The DRC provides funding for novel, peer-reviewed research studies focused on the prevention, cure, and improved management of type 1 diabetes. To learn more and support these efforts, visit https://diabetesresearchconnection.org.

Learn More +

Could There Be More than One Form of Type 1 Diabetes?

Researchers know that there are significant differences between type 1 diabetes (T1D) and type 2 diabetes (T2D), but now they are digging a little deeper. When it comes to T1D, the disease may not affect everyone in the same way. According to a recent study, there may be more than one endotype, and a major differentiator could be age of diagnosis.

The study looked at a small sample of 19 children diagnosed with T1D within the past two years and compared age of diagnosis against amount of beta cell destruction and levels of proinsulin and C-peptides. They also compared these ratios in a group of 171 adults with T1D based on their age of diagnosis. Their results showed that children who were diagnosed before the age of 7 had much higher levels of proinsulin-insulin co-localization than those diagnosed after age 13. Individuals between ages 7 and 13 were divided and fell into one group or the other.

The researchers also compared results against CD20Hi and CD20Lo immune profile designations for each participant. Children age 7 or younger tended to be CD20Hi, while those age 13 or older were CD20Lo, and the children in between were aligned with their respective groups based on whether they were CD20Hi or CD20Lo.

These differences in proinsulin and C-peptide concentrations demonstrate a distinction in how individuals are impacted by T1D, leading to at least two separate endotypes. Understanding whether an individual has T1D endotype 1 (T1DE1) or T1D endotype 2 (T1DE2) could enable more targeted and effective treatment of the disease based on how each group responds. Individuals with T1DE1 are identified as having higher levels of beta cell loss, therefore may have more difficulty regulating blood glucose. Those with T1DE2 may retain more beta cells, and determining ways to activate and protect these cells could support improved natural insulin production.

Recognizing that T1D affects people differently is a step in the right direction toward more personalized medicine and targeted therapies. Therapeutic trials could be aimed at groups depending on age of diagnosis and specific endotype in the future as larger studies are conducted to determine the significance of these findings.

Diabetes Research Connection (DRC) is committed to supporting advances in research around type 1 diabetes and provides early-career scientists with critical funding for their studies. Research is focused on preventing and curing type 1 diabetes, minimizing complications, and improving quality of life for those living with the disease. Learn more and support these efforts by visiting https://diabetesresearchconnection.org.

Learn More +

Artificial Pancreas App Supports Type 1 Diabetes Management

Maintaining good glycemic control is challenging when living with type 1 diabetes. Individuals must carefully monitor their blood glucose levels throughout the day, then administer the appropriate amount of insulin to try to stay within target range. This can be more difficult than it sounds. Furthermore, many people with type 1 diabetes struggle with their blood sugar dropping overnight while they are asleep.

Patients living in the UK may have access to a new artificial pancreas app that takes away some of the stress and burden of constant blood sugar management. The CamAPS FX app works in conjunction with the Dana RS insulin pump and the Dexcom G6 continuous glucose monitor. Using a complex algorithm, the app tracks blood glucose levels, then automatically adjusts insulin administration accordingly. This reduces the demand for regular finger sticks to check blood sugar, and patients do not need to calculate how much insulin they require on their own.

The app has been approved in the UK for individuals age one and older, including pregnant women, who have type 1 diabetes. It was developed based on 13 years of clinical research conducted by Professor Roman Hovorka from the University of Cambridge and Cambridge University Hospitals NHS Foundation Trust and his team at the Wellcome-MRC Institute of Metabolic Science. In addition, data from the app can be shared with patients’ healthcare teams allowing them to provide more personalized diabetes care.

Technology has made some significant advancements in type 1 diabetes care, and this is one more example of how it can impact management of the disease and improve health outcomes. Artificial pancreas technology is an area that researchers have been focused on improving over the years in order to give patients more options and reduce the burden of managing the disease.

Diabetes Research Connection (DRC) is excited to see more results from use of the app and what it could mean for future diabetes management, not just in the UK but around the world. Currently the app is only available to patients at select diabetes clinics in the UK. Though not involved with this project, the DRC is committed to advancing diabetes research to help prevent and cure type 1 diabetes, minimize complications, and improve quality of life for those living with the disease. Early-career scientists can receive up to $50K in funding to support novel, peer-reviewed research projects. To learn more about current studies and contribute to these efforts, visit https://diabetesresearchconnection.org.

Learn More +

Using Telehealth to Enhance Pediatric Type 1 Diabetes Management

Telehealth has come a long way in improving access to care. It has become even easier for patients to connect with healthcare providers without going to their office. Using available technology, a recent study out of the University of California, Davis (UC Davis) examined whether management of type 1 diabetes (T1D) in pediatric patients could be improved through telehealth.

Fifty-seven patients under the age of 18 participated in the study where they were connected with a member of the research team every four, six, or eight weeks via video conference for at least one year. This was in addition to quarterly clinic visits. All of the patients had suboptimal glycemic control before the study began, and most lived at least 30 miles away from the hospital.

The program was led by Stephanie Crossen, a pediatric endocrinologist at UC Davis Health. Prior to each video call, patients sent data from their diabetes devices for Crossen and her team to review. After one year, their findings showed that “83 percent of participants completed four or more diabetes visits within a year, compared to only 21 percent prior to the study,” and “mean HbA1c decreased from 10.8 to 9.6 among participants who completed the full year.”

In addition, 93 percent of participants were highly satisfied with the program, and more participants were using technology such as insulin pumps and continuous glucose monitors (CGMs). However, one area that did not change significantly was the number of diabetes-related emergency room or hospital visits.

Still, the study shows that telehealth could be a valuable intervention for children and youth with type 1 diabetes to help them better manage their disease and health outcomes. A reduction in HbA1c levels and an increase in frequency of care is encouraging. Telehealth may be one more tool for effectively supporting individuals with T1D.

Research continues to advance the understanding, treatment, and management of T1D. Though not involved with this study, the Diabetes Research Connection (DRC) supports these efforts as well by providing critical funding to early-career scientists studying the disease.  Researchers can receive up to $50K for novel, peer-reviewed projects aimed at preventing or curing type 1 diabetes, minimizing its complications, and improving quality of life for individuals living with the disease. To learn more, visit https://diabetesresearchconnection.org.

Learn More +

Recapping Current Research Regarding Type 1 Diabetes Development and Cardiovascular Risks

Our bodies are formed from an innumerable number of cells and molecules. Both DNA and RNA play a role in determining cells’ function and purpose. At a conference of the National Congress of the Spanish Diabetes Society, researchers revealed new studies regarding the potential role of long non-coding RNAs (lncRNAs) in the development of type 1 diabetes, as well as the risk of cardiovascular problems in individuals with the disease.

A recent study found that lncRNA, which are use in transcriptional and post-transcriptional regulation of cells and are not translated into proteins, may be involved in the destruction of insulin-producing beta cells. There may be some forms of lncRNAs that affect inflammation and cell death, which are factors in the development of type 1 diabetes.

Dr. Izortze Santín Gómez, a professor at the University of the Basque Country and a researcher at the Biocruces Bizkaia Research Institute is studying the fundamental characteristics of the lncRNAs and how they may affect pancreatic beta cells on a genetic-molecular level. Once this is better understood, researchers could begin modifying the lncRNAs to create a targeted therapy that increases survival rate and viability of the pancreatic beta cells.

Another study that was presented at the conference involved cardiovascular risk for individuals with type 1 diabetes. Joseph Ribalta, a professor at the Rovira i Vigili University of Reus, found that “more than 30% of heart attacks occur in people with apparently normal LDL cholesterol.” High cholesterol is a key risk factor for heart attacks. His findings have revealed that individuals with T1D may be at greater risk because “LDL particles are more numerous and smaller, that their HDLs work less effectively and/or that there are some lipoproteins (remnants) that the body has trouble eliminating.”

Identifying these potential risk factors and knowing how to test for or treat them could help reduce hidden cardiovascular risk in individuals with T1D. For instance, focusing on triglycerides rather than cholesterol may be beneficial for patients who meet certain criteria.

There is a lot of interesting work coming out of laboratories and universities around the world regarding type 1 diabetes. Researchers are constantly improving and refining their understanding of the disease and possible ways to prevent, treat, or cure it. Diabetes Research Connection (DRC) is committed to contributing to this wealth of knowledge by providing critical funding to early-career scientists pursuing novel research studies focused on type 1 diabetes. Learn more about current projects and how to help by visiting https://diabetesresearchconnection.org.

Learn More +

Increasing Cell Protection Against Immune System Attacks

One of the challenges researchers have faced with using cell therapy to treat type 1 diabetes is that the body’s immune system may still attack and destroy transplanted cells. This process may be slightly delayed depending on the approach used, but it often still occurs. That means that patients may still need to rely on immune suppression medications in conjunction with cell therapy. However, immunosuppression can increase risk of infection or other complications.

A recent study found that targeting highly durable cells that have the ability to escape immune attacks and survive may be key in developing a more effective treatment for type 1 diabetes. Dr. Judith Agudo has identified stem cells with this “immune privilege” and is working to determine exactly what contributes to this level of protection and how to replicate it with beta cells. Dr. Agudo is an assistant professor in the department of immunology at Harvard Medical School and in the department of cancer immunology and virology at the Dana-Farber Cancer Institute.

If scientists can engineer insulin-producing beta cells that have the ability to avoid attacks from the immune system while still performing their intended functions, this could be a huge step forward in potentially treating type 1 diabetes. The beta cells would be able to stimulate insulin production without requiring the patient to take immune suppression medications, meaning their immune system could continue to function as normal and fend off infection.

Once Dr. Agudo is able to develop these durable beta cells, they will be tested in animal models, followed by humans a few years later. It is important to conduct thorough testing to ensure this method is both safe and effective. If it is, the goal would be to eventually make it available to anyone who requires the use of insulin.

Diabetes Research Connection (DRC) is excited to see how this study evolves and what it could mean for the future of diabetes treatment. While not involved in this study, the DRC plays an integral role in providing critical funding for early career scientists focused on research for type 1 diabetes. Scientists continue to advance understanding of the disease and potential approaches to improve diagnosis, treatment, management, and quality of life for individuals living with type 1 diabetes. Learn more about current DRC projects and how to support these efforts by visiting https://diabetesresearchconnection.org.

Learn More +

Generating Pancreatic Islet Organoids to Treat Type 1 Diabetes

In individuals with type 1 diabetes, the immune system mistakenly attacks and destroys insulin-producing beta cells. Without a naturally occurring supply of insulin to manage glucose, blood-glucose levels can quickly spiral out of control leading to hypo- or hyperglycemia. If left untreated, this can become potentially fatal.

A recent study found a way to generate an abundance of pancreatic islet organoids that are glucose-responsive and insulin-secreting. As such, they can help with management and potential reversal of type 1 diabetes. Researchers identified a cluster of protein C receptor positive (Procr+) cells in the pancreas of adult mice. These cells have the ability to differentiate into alpha, beta, omega, and pancreatic polypeptide (PP) cells, with beta cells being the most abundant.

The Procr+ islet cells can then be cultured to generate a multitude of islet-like organoids. When the organoids were then be transplanted into adult diabetic mice, they were found to reverse type 1 diabetes. More research is necessary to determine if human pancreatic islets contain these same Procr+ endocrine progenitors and a similar process could be used to treat type 1 diabetes in humans.

As scientists delve deeper into the cellular impact of the disease and how different cells respond and can be manipulated, it opens new doors to potential treatments or cures for type 1 diabetes. Though not involved in this study, this is the type of cutting-edge research that the Diabetes Research Connection (DRC) is committed to supporting. Early-career scientists can receive up to $50,000 in funding through DRC for novel, peer-reviewed research aimed at preventing and curing type 1 diabetes, minimizing complications, and improving the quality of life for individuals living with the disease. To learn more and support these efforts, visit https://diabetesresearchconnection.org.

Learn More +

Could Insulin-Producing Beta Cells Play a Role in Triggering Onset of Type 1 Diabetes?

Researchers know that type 1 diabetes (T1D) occurs when the immune system mistakenly attacks and destroys insulin-producing beta cells. This leaves the body unable to self-regulate blood glucose levels because it produces little or no insulin on its own. What scientists have been striving to understand is what causes the body to destroy these cells in the first place.

A recent study found that the beta cells themselves may play a role in signaling the attack. The insulin-producing cells may be sending out signals that increase M1 macrophages that cause inflammation and the resulting cell destruction. The M2 macrophages that reduce inflammation and help repair tissue are not as heavily expressed.

The researchers looked specifically at Ca2+-independent phospholipase A2beta (iPLA2beta) enzymes and the resulting iPLA2beta-derived lipids (idles) and how they are activated by beta cells.  The idols either stimulate M1 macrophages or M2 macrophages depending on the active signaling pathways.

The study involved two sets of mice – one group that had no iPLA2beta expression (knockout mice), and one group with overexpression of iPLA2beta.  Researchers found that even when M1 macrophage activation was induced, the knockout mice experienced an increase in M2 macrophages and a reduced inflammatory state. The mice that had overexpression of iPLA2beta, on the other hand, experience an increase in M1 macrophages and inflammatory eicosanoids.

According to Sasanka Ramanadham, Ph.D., research co-lead, “To our knowledge, this is the first demonstration of lipid signaling generated by beta cells having an impact on an immune cell that elicits inflammatory consequences. We think lipids generated by beta cells can cause the cells’ own death.”

As scientists continue to learn more about lipid signaling and the potential role it plays in the development of type 1 diabetes, this could lead to improved methods of delaying or preventing onset or progression of the disease. This is yet another approach that researchers are taking to understand as much as they can about how and why T1D develops and how to better manage the disease.

It is this type of research that opens doors to advancements toward preventing or curing type 1 diabetes. Diabetes Research Connection (DRC) supports early-career scientists pursuing novel, peer-reviewed research studies focused on improving diagnosis, treatment, and prevention of T1D as well as improving quality of life for individuals living with the disease and one day finding a cure. Ensuring researchers receive necessary funding for their projects is critical. To learn more about current projects and support these efforts, visit https://diabetesresearchconnection.org.

Learn More +

Redifferentiating Beta Cells to Treat Type 1 Diabetes

All cells serve a specific purpose, and each one plays an integral role in the function and survival of the human body. However, in individuals with type 1 diabetes, insulin-producing beta cells are destroyed leaving the body unable to self-manage glucose levels. Scientists have been trying to determine exactly why this occurs, and how to stop, prevent, or reverse it for years. Each day they learn a little more.

A recent study out of Germany examines dedifferentiation of beta cells as a potential cause for type 1 diabetes.  Researchers believe that insulin-producing beta cells may lose their identity, which in turns causes a regression in function.  They sought to target the affected cells using diabetic mouse models to see if they could redifferentiate the beta cells back to normal function, or at least preserve existing function if regression is caught early.

To do this, they invoked diabetes in mice using streptozotocin but left some functional beta cells. Then, they administered a combination of Glucagon-like peptide-1 (GLP-1) and estrogen in conjunction with long-acting insulin.  The drug was directed to the dedifferentiated beta cells, and results showed that this combination treatment helped to “normalize glycemia, glucose tolerance, to increase pancreatic insulin content and to increase the number of beta cells.”  They also found that when GLP-1/estrogen was used together, rather than each substance on its own, human beta cells also showed improved function.

The mice in the study showed no signs of systemic toxicity even when high doses of the drug were administered.  This could help to ease the way when the treatment is ready to be used in human trials. Researchers want to further explore whether this treatment could be used as a form of regenerative therapy to redifferentiate dedifferentiated beta cells and stimulate insulin production. If type 1 diabetes was detected early on, the therapy could potentially be used to slow or stop cell regression.

This study could change the way that some researchers approach their work and inspire new studies aimed at treating or curing type 1 diabetes. Diabetes Research Connection (DRC) supports early-career scientists in pursuing this type of work by providing necessary financial resources. With proper funding, scientists can move forward with their projects and improve not only understanding of the disease, but also treatment options.  The goal is to one day discover a cure. To learn more about current projects and how to help, visit https://diabetesresearchconnection.org.

Learn More +

New Oral Treatment May Help with Managing HbA1c for Type 1 Diabetes

Keeping HbA1c levels within a healthy range can be challenging for those living with type 1 diabetes. It requires constant vigilance when it comes to monitoring blood sugar levels and administering the appropriate amount of insulin. Even with careful management, there can be complications.

A recent study found that a once-daily pill used in conjunction with insulin may help reduce HbA1c levels by as much as 0.32% after 12 weeks.  The pill, known as TTP399, activates glucokinase in the liver.  This, in turn, stimulates the body to improve glucose utilization which can lead to lower blood glucose levels. Overall, this could help improve HbA1c levels as well as time spent within a healthy glucose range.

A randomized, double-blind, adaptive study compared participants taking the TTP399 pill versus those on a placebo.  Those who received the pill showed improved glucose response and fewer symptomatic hypoglycemic episodes.  The average improvement in HbA1c was 0.21%, and there was also an average of an 11% reduction in the dosage amount of total daily mealtime bolus insulin needed.

On the other hand, the placebo group showed a 0.11% increase in HbA1c after the 12-week trial period.  Neither group reported any incidences of diabetic ketoacidosis, and there was only one incident of severe hypoglycemia, which occurred in the placebo group.

This phase 2 study involved 85 participants. They were all currently either administering daily injections or using an insulin pump.  If they were using a continuous glucose monitor (CGM), they had to be on it for at least three months prior to the start of the study to be included.

According to Steve Holcomb, president and CEO of vTv Therapeutics, “Consistent with FDA guidance, a 0.3% improvement in HbA1c is considered clinically meaningful and coupled with the well-controlled population of patients and favorable safety data from our clinical trials to date, this provides a strong basis for moving this potential first-in-class program forward.”

The pill could be used in conjunction with insulin therapy as a way of further managing and reducing HbA1c levels. This an exciting step forward in terms of type 1 diabetes management and supporting individuals in staying within healthy ranges for HbA1c and daily blood sugar levels.

Diabetes Research Connection (DRC), though not involved with this study, is interested to see how it evolves moving forward, and what it could mean for the future of oral treatment involving noninsulin products.

Research for type 1 diabetes continues to improve and advance every single day, and DRC helps makes this possible by providing critical funding to early-career scientists pursuing novel research studies on type 1 diabetes.  Through generous donations from individuals, corporations, and foundations, they are able to provide researchers with up to $50K in funding to support studies aimed at improving prevention measures, enhancing quality of life, reducing complications, and finding a cure. Learn more by visiting https://diabetesresearchconnection.org.

Learn More +

Type 1 Diabetes Cases Continue to Rise

Type 1 diabetes (T1D) is a well-known disease, but it is one that scientists have yet to find a way to prevent or cure. The exact cause is unknown because it is believed that both genetics and environment play a role. While significant advances have been made in understanding and managing T1D over the years, it is still a disease that affects nearly 1.6 million Americans.

A recent study from the Centers for Disease Control and Prevention (CDC) reveals that the number of people diagnosed with T1D has increased by 30 percent since 2017. That is an alarming change. Breaking things down even further, it appears that the greatest increases have occurred among African American, Hispanic, and Asian/Pacific Islander children, with each group seeing an approximate 20 percent rise in cases between 2002 and 2015. When it comes to age, new diagnoses of T1D occurred most frequently in children between the ages of 5 and 14.

Overall, the CDC reports that approximately 1.4 million adults and 187,000 children in the United States are currently living with T1D. Unlike type 2 diabetes, T1D is not related to diet or lifestyle. For reasons that are not yet entirely understood, the immune system attacks and destroys insulin-producing beta cells leaving the body unable to effectively regulate blood sugar levels. Researchers have found many ways to support individuals in better monitoring and managing the disease, but they have not found a way to stop it from occurring or to cure it once it does.

That is why ongoing research and clinical trials are so important. They are vital to improving how the disease is managed and reducing complications, as well as one day finding a cure. Diabetes Research Connection provides early-career scientists with up to $75,000 in funding so that they can move forward with novel, peer-reviewed research studies focused on type 1 diabetes. This funding makes it possible for them to continue building the body of knowledge around the disease and exploring new treatment options. To learn more about how to support these efforts, visit https://diabetesresearchconnection.org.

Learn More +

Exploring the Impact of Type 1 Diabetes on Bone Health

The body continually goes through a cycle of bone formation and bone resorption. As bone tissue is broken down and calcium is released, new microstructures are formed to support bone growth. Issues with bone metabolism, such as low bone mineral density (BMD), can lead to osteoporosis and other conditions. Studies have shown that adults with type 1 diabetes often have lower BMD.

A recent study found that individuals with type 1 diabetes may be at risk for decreased BMD compared to individuals without the disease. In a study of 173 children and adolescents with T1D compared to 1,410 non-diabetic peers, there was a significant difference in bone turnover markers in participants with T1D. Researchers looked at three different markers based on BMD measurements and blood samples and found that individuals with T1D had fewer of all three types of markers. However, there was no significant difference between bone turnover markers and diabetes duration, or in BMD levels between the two groups.

According to Dr. Jens Otto Broby Madsen, a physician in the department of pediatrics and adolescent medicine at Herlev Hospital in Denmark, “Decreased bone turnover markers might be the first warning of a negative effect of type 1 diabetes on bone health. Bone turnover markers might be a way of screening for early changes, long before changes can be seen by DXA scans.”

This may help improve health, quality of life, and disease management in the future to decrease risk of other conditions in conjunction with T1D, or at least improve early detection. Diabetes Research Connection (DRC) strives to support novel research studies by providing critical funding to early career scientists to help them move forward with their work. It is these types of efforts that increase understanding about the disease and can improve diagnosis, prevention, treatment, and management of T1D. To learn more about current projects and how to help, visit https://diabetesresearchconnection.org.

Learn More +

Advancements in Type 1 Diabetes Management Technology

One of the challenges – and frustrations – of living with type 1 diabetes (T1D) is multiple finger sticks each day to test blood sugar levels. Individuals want to ensure that they are staying on top of blood sugar in order to administer insulin or glucose as needed. Even continuous glucose monitors require a tiny needle stick in order to monitor blood sugar levels.

In a recent study, researchers share advancements using laser technology, rather than blood samples, in order to measure glucose concentration. The device they developed uses Raman spectroscopy, which shines near-infrared light on the skin to determine its chemical composition. This includes reading the signal given off by glucose located in the interstitial fluid that surrounds skin cells.

The near-infrared light only has the ability to penetrate a few millimeters into the skin, so researchers needed to find a reliable way to measure glucose from this reading. Initially, they were comparing the chemical composition of the tissue with blood samples taken simultaneously to determine glucose levels. However, there was too much unpredictability since movement of the patient or changes in the environment could alter results. In addition, it required a great deal of calibration.

The Laser Biomedical Research Center at MIT has spent more than 20 years working on developing a glucose sensor using Raman spectroscopy, and they have made a lot of advancements over the years. The latest device has evolved from indirect measurement of glucose concentrations, like those mentioned above, to direct measurement. Researchers found that by using a small fiber to collect the Raman signal after shining the near-infrared light at a 60-degree angle, they could filter out unwanted signals from other solid components in the skin. Testing the device on pigs, they were able to get an accurate glucose reading for up to an hour, and it only required about 15 minutes of calibration.

One drawback to the current technology is that the device is approximately the size of a desktop printer, meaning it is not easily portable. With a slightly smaller system, individuals could have a testing device at home or at work where they could place their finger on a sensor and Raman spectroscopy would be used to check blood sugar. Eventually, researchers would like to create a wearable monitor that would act as a continuous glucose monitor but without any needles.

After more than two decades, researchers are finally getting closer to their goal of creating a laser-based glucose sensor that can be used for everyday monitoring. It is encouraging to see advancements that seek to take some of the pain and inconvenience out of blood sugar monitoring by eliminating the need for so many needles.

Diabetes Research Connection (DRC) is excited to see how this technology continues to advance and what it may mean for the future of continuous glucose monitoring and diabetes management. Researchers around the world are focused on improving the prevention, treatment, and management of type 1 diabetes. The DRC supports these efforts by providing up to $75K in funding to early-career scientists pursuing novel research for T1D. Learn more by visiting https://diabetesresearchconnection.org.

Learn More +

Exploring the Impact of Environment on Type 1 Diabetes Risk

While researchers know that type 1 diabetes is caused by the destruction of insulin-producing beta cells, what they are still uncertain about are the exact causes of this process. They know that genetics play a role, yet there is not a single gene responsible for the disease; there are several genes that are believed to contribute. Furthermore, they are not convinced that the disease is entirely genetic, and have reason to believe that environmental factors are to blame as well. But once again, there is not a single environmental risk that has a significantly greater impact than others.

A recent study examined several environmental risk factors such as “air pollution, diet, childhood obesity, the duration of breastfeeding, the introduction of cow’s milk, infections, and many others” and yet researchers still do not have any definitive answers. What they do know is that the incidence of type 1 diabetes has increased over the past 30 years by 3 percent year over year, and this change is too significant to be caused by genetics alone.

Using a variety of modeling, they evaluated the impact of specific environmental factors over time. But the simulated data did not pinpoint one factor that stood out above the others and had a stronger impact on diabetes risk. It is likely that a combination of environmental factors is at play in conjunction with genetic risk. More research is needed to further investigate potential risks and protective factors when it comes to type 1 diabetes.

These findings may inspire other researchers to dig more deeply into environmental factors and their impact on disease development and progression. Diabetes Research Connection (DRC), though not involved with this study, provides critical funding for early-career scientists to pursue novel research studies related to type 1 diabetes to enhance understanding as well as prevention, treatment, and management of the disease. The goal is ultimately to find a cure. Learn more about current projects and how to help by visiting https://diabetesresearchconnection.org.

Learn More +

Making Insulin More Affordable During Coronavirus Pandemic

The coronavirus crisis has turned life upside down for people around the world. As tighter restrictions are put in place and more businesses are forced to close or cut hours, it is taking a serious toll on the economy and individuals’ finances. Millions of people have filed for unemployment and lost employer-provided health insurance.

This can be an especially scary time for people with chronic diseases such as type 1 diabetes who require continued medical care, supplies, and medications to manage their condition. Lack of income or insurance means that some people can no longer afford insulin. They may begin rationing what they have left, which can be incredibly dangerous and lead to diabetic ketoacidosis, which can be fatal.

The cost of insulin in the United States has skyrocketed in recent years, but in an effort to support those with diabetes during this difficult time, pharmaceutical company Eli Lilly recently announced a $35 monthly cap on out-of-pocket insulin costs. Almost all of Lilly’s insulins are included, and the cap applies to individuals both with and without insurance. However, according to Lilly, “patients with government insurance such as Medicaid, Medicare, Medicare Part D, or any State Patient or Pharmaceutical Assistance Program are not eligible for the scheme.”

With so many Americans facing financial hardships right now, this is a step toward reducing some of the stress for those with diabetes regarding how to pay for insulin in order to keep themselves healthy. Insulin is not optional when it comes to type 1 diabetes – it is a life-sustaining medicine. Other drug makers such as Sanofi and Novo Nordisk have also lowered the cost of insulin during this time.

Diabetes Research Connection (DRC) is glad to see that individuals with type 1 diabetes are getting some support during these challenging times so that they can continue to afford the insulin they need. Until a cure for diabetes can be found, affordable insulin is a necessity. The DRC continues to work toward finding a cure as well as improving treatment options. Learn more at https://diabetesresearchconnection.org.

Learn More +

Investigating a New Form of Diabetes Management – a Smart Patch

The traditional method of managing type 1 diabetes is testing blood sugar levels, then dosing and administering the correct amount of insulin to keep blood sugar within the target range. This is done over and over again throughout the day, each and every day. Researchers are constantly seeking improved methods of managing the disease that are less patient intensive.

Over the years, scientists have created continuous glucose monitors, insulin pumps, artificial pancreases, and other systems to assist with managing type 1 diabetes (T1D). Each device has its pros and cons depending on the patient and their situation. Patients must find what works best for their needs.

A recent study is investigating yet another treatment option: a smart insulin patch. This small patch contains tiny microneedles with glucose-sensing polymer. When blood sugar begins to rise, the polymer is activated and releases doses of insulin. As blood-glucose levels return to normal, it stops administering insulin.

This technology removes the burden of constantly testing blood by patients and handles the testing and administration on its own. The needles penetrate the skin just far enough to be effective without causing much more than a pinprick of pain. The current model is designed to manage blood sugar levels for up to 24 hours and has been tested on mice and pigs. After 24 hours, the patch would need to be replaced with a fresh one.

Researchers are in the process of obtaining approval to begin human trials for the smart insulin patch. Although it may be several years before this technology could potentially be brought to market, it is a step in the right direction toward creating a more effective, efficient way of managing T1D. Researchers also believe that it may help reduce risk of insulin overdoses which can lead to hypoglycemia.

Though not involved with this study, Diabetes Research Connection (DRC) is excited to see what happens in the future if the patch is approved for human trials. It has the potential to become one more tool for individuals with T1D to use to manage the disease and enhance their quality of life. The DRC is committed to supporting research regarding T1D and providing funding to early career scientists for novel, peer-reviewed studies. Learn more about current projects and how to support these efforts by visiting https://diabetesresearchconnection.org.

Learn More +

Improving Vascularization in Pancreatic Islet Transplants

One of the approaches scientists have been exploring for the treatment of type 1 diabetes is pancreatic islet cell transplants. By introducing these cells into the body, they are often able to maintain better glycemic control and support insulin production. However, there are many challenges that come with this type of treatment. It is essential to protect transplanted islet cells from immune system attack while also promoting sustainability. Cells tend to lose function over time and poor vascularization is often a contributing factor.

In a recent study, scientists have found a way to improve vascularization and therefore function of transplanted human pancreatic islets in diabetic mice. In addition to encapsulating islet cells, they also included human umbilical cord perivascular mesenchymal stromal cells or HUCPVCs. The HUCPVCs had a positive effect on graft function and suppressed T cell responses. In both immunocompetent and immunodeficient diabetic mice, glycemic control was maintained for up to 16 weeks when cells were transplanted via a kidney capsule, and for up to six weeks or seven weeks respectively when administered via a hepatic portal route. Furthermore, with the addition of HUCPVCs to the transplanted islet mass, rejection was delayed and the graft showed some proregenerative properties.

These findings may improve the future of human islet allotransplantation as a viable option for long-term treatment of type 1 diabetes. Scientists are constantly exploring ways to reduce rejection and the need for prolonged immunosuppression while maintaining better glycemic control. This study opens doors for more advanced research on the use of HUCPVCs in islet transplantation as well as related therapies.

Diabetes Research Connection is committed to supporting research for type 1 diabetes by providing early-career scientists with essential funding to keep projects moving forward. Learn more about current studies and how to donate to these efforts by visiting https://diabetesresearchconnection.org.

Learn More +

Advances in Therapeutic Treatment for Type 1 Diabetes without Immune Suppression

One approach that researchers have been exploring to treat type 1 diabetes is cell therapy. By introducing new insulin-producing beta cells or other types of cells, scientists strive to support the body in once again producing its own insulin. A common challenge with this technique is that it often has limited results as the body once again attacks the cells, or they slowly lose function on their own. In addition, cell therapy typically requires immune suppression which can put individuals at risk for other complications.

However, in a recent study, researchers tested a new method of transplanting therapeutic cells by using a retrievable device with a silicone reservoir. The cells are further protected by a porous polymeric membrane that allows macrophages to enter the device without destroying the transplanted cells, or that prevents them from entering at all.

When tested in immunocompetent mice, the device supported normoglycemia for more than 75 days without the need for immunosuppression. The transplanted cells were able to effectively produce erythropoietin, which in turn improves oxygen supply to the body, and also generates insulin to manage blood sugar levels.

This is a notable step forward in improving cell therapy for the treatment of type 1 diabetes. More research and testing are required to determine how this process translates into human models. Researchers have been trying to limit or eliminate the need for immune suppression while transplanting healthy pancreatic, islet, and stem cells into the body to control blood glucose levels.

Dan Anderson, Ph.D., a member of the Diabetes Research Connection (DRC) Scientific Review Committee, is the senior author of the article published regarding these findings. DRC is excited to see where these advances may lead and what it could mean for the future of cell transplantation techniques and cell therapy for type 1 diabetes. The organization provides critical funding for a wide range of projects related to improving diagnosis, treatment, and prevention of the disease. Learn more about current studies and how to support these efforts by visiting https://diabetesresearchconnection.org.

Learn More +

Differentiating Between Childhood-Onset and Adult-Onset Type 1 Diabetes

Although many cases of type 1 diabetes (T1D) emerge in childhood because it is an autoimmune disorder unrelated to diet or exercise, there are some individuals who develop T1D in adulthood. This condition is referred to as latent autoimmune diabetes in adults, or LADA. LADA shares characteristics with both type 1 and type 2 diabetes, but it is more closely related to type 1.

Researchers estimate that around 10 percent of individuals diagnosed with T2D actually have LADA. This is discovered when patients do not respond as expected to common T2D treatment. Just like with T1D, their body’s immune system mistakenly attacks and destroys insulin-producing beta cells that are essential for blood sugar regulation.

Up to this point, autoantibody screening was the primary way of differentiating between LADA, T1D, and T2D, but this can be an expensive process. However, a recent study found that there may be genetic differences between these conditions that are significant enough to serve as a more affordable yet still reliable way of diagnosing diabetes type.

With T1D, when researchers examined the major histocompatibility complex (MHC) and “control for T1D genetic variants in one part of the MHC, other variants associated with T1D appear in another part of the MHC.” When they conducted the same test on LADA patients, the results were not the same. In controlling for T1D genetic variants, there was no association in another part of the MHC. Furthermore, they saw the same differences in outcomes when a sensitivity test was conducted.

These genetic differences may help medical professionals more accurately diagnose individuals with LADA and provide more effective treatment sooner. Additional research is necessary to determine whether these findings hold true across multiple ethnicities.

It is these types of studies that help other scientists advance their own research regarding type 1 diabetes in order to improve diagnosis, treatment, and management of the disease. Diabetes Research Connection (DRC) provides critical funding for early-career scientists pursuing novel research studies on T1D. To learn more or support current projects, visit https://diabetesresearchconnection.org.

Learn More +

Unlimited access to all the essential project updates latest diabetes research news, and more.