Influencing Cell Development to Support Type 1 Diabetes Treatment

Posted in Diabetes Research News

One of the strategies researchers have been exploring for treating Type 1 Diabetes (T1D) is getting the body to generate new insulin-producing islet cells, or keeping it from destroying implanted cells. In individuals with T1D, the body does not produce enough insulin on its own to manage blood sugar levels because the immune system attacks and destroys these islet cells.

In a recent study, scientists at the University of Copenhagen (Denmark) and the Helmholtz Zentrum München (Germany) may have found a way to influence cell development in order for the body to produce more insulin-producing cells on its own. This could play an integral role in the development of improved treatment options for T1D.

The scientists closely examined a type of immature cells in the pancreas known as progenitor cells. They are similar to stem cells in that they can develop into different types of mature cells, but the variety is more limited, and they cannot divide and reproduce indefinitely. Mainly they become either endocrine beta cells or duct cells. Endocrine cells include islet cells.

By carefully studying the constant movement of these progenitor cells, researchers found that their development is strongly impacted by their environment and what types of structures they interact with. When they have greater interaction with the extracellular matrix laminin, they are more likely to become islet cells. When there is greater interaction with fibronectin, this leads to increased mechanical forces within the cell, in turn increasing the likelihood of development into duct cells.

Scientists believe they can transition this understanding to the development of stem cells in order to generate more insulin-producing islet cells by taking advantage of the mechanosignaling pathway. In terms of treatment options, this could contribute to the advancement of cell replacement therapies.

It is encouraging to see how researchers are enhancing and evolving their understanding of how cellular processes are related to type 1 diabetes and how these findings can support improved treatment options. Though not involved with this study, the Diabetes Research Connection strives to further these types of efforts by providing critical funding to early career scientists pursing research on T1D.