DRC & Research News

This page shares the latest news in T1D research and DRC’s community.

Get the most recent diabetes research news, delivered straight to your inbox

Children & honeymoon phase T1D

Simpler Measuring Technique May Help Identify Partial Clinical Remission in Type 1 Diabetes

One of the major challenges of type 1 diabetes is effectively managing blood glucose levels. It is a careful balancing act and differs for every patient. With type 1 diabetes, the body’s immune system mistakenly attacks and destroys insulin-producing cells. This means that patients require regular insulin injections to compensate. However, this is not a perfect solution and patients may still experience complications or side effects and need to be carefully monitored.

Researchers found that after children are initially diagnosed with type 1 diabetes and begin treatment, some experience partial clinical remission (PCR), also known as a “honeymoon period.” During this period, the pancreas is still producing some insulin on its own, and this can temporarily restore blood glucose levels to near normal. This means that patients require fewer or lower doses of insulin. The honeymoon period may last from three months to one year.

But not all children experience this effect. Those who do not are at a higher risk of developing diabetes-related complications. This makes it even more important for physicians to determine whether or not children go into partial clinical remission so they can develop a more effective treatment plan moving forward.

Traditionally partial clinical remission is determined by calculating daily insulin doses and average blood glucose levels and then analyzing the correlation (known as IDAA1C). This can take some time, and when faced with tight time schedules, physicians may not use this method as often as recommended.

In light of this, UMass Medical School physician-scientist Benjamin Nwosu, MD, began studying the accuracy of a simpler method. This approach involves evaluating the total daily dose of insulin the child receives compared to their body weight. If they receive less than 0.3 units per kilogram of body weight per day, it indicates they are in partial clinical remission. There were no major differences in results between using this method and the more complex IDAA1C technique. It is a faster way for clinicians to determine the same results and is just as reliable.

According to Dr. Nwosu, “Encouraging clinicians to use the total daily dose of insulin guideline will improve monitoring of PCR and, therefore, ensure the prevention of early hyperglycemia in patients who exceed it for better long-term outcomes.”

It is encouraging to see an emphasis on early detection and more effective treatment for type 1 diabetes. The Diabetes Research Connection raises funds for early career scientists who are pursuing novel research projects related to the prevention and cure of type 1 diabetes as well as improving quality of life for those living with the disease. One hundred percent of research funds go directly to scientists. Click to learn more about current projects and provide support.

Learn More +
Xylitol

HOW TO MAKE RECIPES MORE DIABETIC FRIENDLY

One of the things that we’ll do more of in the future for Sweet Talkers is to discuss how to lower the number of carbohydrates in a recipe. For example, I was reviewing a recipe with that goal in mind just recently and wanted to share some carb lowering information.

First of all, I am always testing sugars in recipes with the goal of using the healthiest, least processed sugar I can find. Obviously, I am also always looking to limit the amount of sugar I use in a recipe as well but still maintain the sweet taste. Thirdly, I’m always going for good taste. Here’s an example of the kind of analysis I do:

  • 1 Tablespoon of organic Honey =  64 Calories, 17gr Carbs, No Fiber
  • 1 Tablespoon of organic Coconut Nectar = 87 Calories, 18gr Carbs, No Fiber
  • 1 Tablespoon of organic Maple Syrup =       52 Calories, 13gr Carbs, 2mg Sodium

You can easily see here that organic Maple Syrup is the lowest in carbs but will the maple taste alter the taste of the recipe too much? That’s the main question: how will changing an ingredient taste within a given recipe? Also, I track calories as well since that’s often a concern re weight gain.

If the recipe I’m working on altering (to be more diabetic friendly) won’t taste good with Maple Syrup, I typically use Coconut Nectar because the coconut taste usually just comes across as sweet; not coconutty, and the taste is subtle and lower carb in general. I also will typically cut the sugar amount in a recipe by two thirds to one half and see if I can still maintain a sweet enough taste.

Another very helpful substance to use to lower sugars in recipes are extracts for flavoring. While we’re all accustomed to using vanilla extract, especially when baking, there are many other flavored extracts that work beautifully to enhance the flavor of a recipe without increasing the sugar amounts.

Medicine flower culinary extracts offer an extensive line of extracts in many different flavors. As an example, you can take plain yogurt and add about (3) drops of liquid Stevia (no carbs) followed by a drop or two of tropical extract and have a delicious and sweet morning yogurt without any spike in your blood sugars.

Here’s the bottom line: When looking to make a typical, favorite recipe more diabetic friendly, find out first which ingredients have the highest carbs. Then look for healthier, lower carb substitutes that will still maintain the taste/flavor of that recipe and swap the lower carb ingredient in.  Consider using culinary extracts to enhance and compensate for high sugar amounts in recipes.

 At first, this seems time-consuming but altering recipes to make them healthier and more diabetic friendly is a habit that forms easily. It all starts with just paying more attention to what you’re really eating and a number of carbohydrates in a given recipe. Remember, look for foods that are organic, Non-GMO and the least processed.

For more information on this topic and Type 1 Diabetic friendly recipes, visit www.sweettalkers.org

Learn More +
DNA

What Gene Editing Could Mean for Type 1 Diabetes

Altering human genetics is a sensitive subject. There are a lot of things that could potentially go wrong, but also many that could go right. CRISPR/Cas9 technology allows scientists to precisely cut out a segment of DNA and replace it with a new segment. By modifying specific genes, they could essentially eliminate certain diseases and remove inherited diseases from the human germline.

This unleashes new opportunities when it comes to treating – and potentially curing – diabetes. Scientists recently implanted skin grafts with a gene (GLP1) to stimulate insulin secretion by the pancreas. They attached these grafts to mice and found that the new genes helped to remove excess glucose from the bloodstream. Using skin grafts is a safe and relatively inexpensive process.

Researchers in Sweden managed to use CRISPR/Cas9 to switch off an enzyme that is involved in regulating the TXNIP gene which affects beta cell death and decreases insulin production. In Australia, the technology was used to try to identify rogue immune cells that attack the pancreas and contribute to the development of type 1 diabetes.

However, there is still more research that needs to be done to fully understand the impact of gene editing and potential effects that it could have. Though highly precise, there is still around a one percent chance of off-target effects occurring. These are changes to other parts of the genome outside of the area targeted by CRISPR/Cas9. There is a lot of risks involved with changing human DNA and many questions that are still unanswered. Furthermore, many of these studies have been conducted on mice and results do not always correlate exactly to humans.

But with more extensive testing and research, scientists may be able to find a safe way to treat or even cure diabetes through gene editing. Studies that exist so far hold potentially promising results. It is these types of cutting-edge, innovative approaches that could change the future of type 1 diabetes. The Diabetes Research Connection proudly supports early career scientists in pursuing novel research for type 1 diabetes. Click to learn more about current projects and provide support.

Learn More +
Stem Cell

Tackling Type 1 Diabetes at a Cellular Level

In individuals with type 1 diabetes, the body mistakenly attacks insulin-producing cells and destroys them. This leaves the body unable to regulate the amount of sugar in the blood or shift the sugar into cells that convert it into energy. Uncontrolled blood sugar can take a toll on the body damaging the kidneys and heart and leading to other complications. Individuals with type 1 diabetes must take care to monitor their own blood sugar and administer the correct amount of insulin to make up for the work that would normally be done by the pancreatic cells.

However, researchers at the University of Pittsburgh are looking for a way to overcome these challenges by focusing on change at a cellular level. Since the body destroys insulin-producing cells, they are striving to replace them. The researchers want to use the body’s own pluripotent stem cells and turn them into pancreatic islet cells.

To do this, they must determine exactly how to manipulate the cells to get them to transform into the islet cells needed by the body. They are working in collaboration with other universities to further their studies.

According to Ipsita Banerjee, principal investigator in the study and a professor of chemical and bioengineering at the University of Pittsburgh, “We should be able to mass produce these islets, and actually, we have another grant where we are primarily looking into how to mass produce pluripotent stem cells.”

Results from early clinical trials show short-term improvement in more than half of participants. They were able to go off of insulin for two-week periods of time during the first year but most eventually had to continue using insulin injections. Further testing and clinical trials could help to improve these results.

This is far from the only study being conducted to improve the lives of individuals with type 1 diabetes. Researchers are continually striving to make innovate breakthroughs and try cutting-edge approaches. The Diabetes Research Connection supports early career scientists with up to $50,000 in funding for research on type 1 diabetes. These are projects that hold potential but may be passed over by more prominent and competitive funding sources. Click to learn more about current projects and provide support. Every penny counts.

Learn More +
Cellular Level

Could Beta Cell Age and Differentiation Play a Role in the Development of Diabetes?

The exact cause of type 1 diabetes is yet unknown. Researchers have a good understanding of how type 1 diabetes works and impacts the body, but not of the cellular intricacies that contribute to the development of the disease. A recent study examined the age and role of beta cells within pancreatic islets to better understand proliferation and function within the organ.

The study examined zebrafish and found that younger beta cells replicate more quickly than older beta cells, but they are less functional in terms of glucose responsiveness. As cells mature, they synchronize their proliferation and function.  In addition, within the pancreas differentiated cells are responsible for both organ growth and function, but it is yet undetermined whether certain cells make specific contributions to one factor or the other.  Organs such as the brain operate differently when it comes to increases in cellular mass and differentiation of cell function.

Through closer examination, researchers found that in the pancreas, beta cells differentiate according to the location in different parts of the embryo. In post-embryonic stages of development, beta cells from these different lineages are all brought together. This may also impact glucose responsiveness and the ability to balance insulin production with the energy necessary to support cell division. More research is necessary to determine exactly how proliferation and function affect heterogeneity in human beta cells and pancreatic islets.

The Diabetes Research Connection supports innovative and cutting-edge research when it comes to type 1 diabetes. Funds are raised for early career scientists to advance their research and contribute to the prevention or cure of type 1 diabetes as well as improving quality of life for those living with the disease. To learn more and support research efforts, visit http://diabetesresearchconnection.org.

Learn More +
NATIONAL CHILD HEALTH DAY

Easing Transitions from Pediatric to Adult Care for Diabetes

Type 1 diabetes is a chronic condition that often emerges in childhood, and, as of yet, has no cure. Patients must learn to effectively manage their diabetes throughout all stages of their lives and continue following up with their healthcare provider. However, a recent study found that as children progress from adolescence into adulthood, there is often no formal transition process to help them adapt to adult care for diabetes.

In shifting from pediatric to adult care, patients must find a new provider who is skilled in managing diabetes care, transfer their records, adapt to less flexible scheduling options, and familiarize themselves with the changes that come with moving to an adult provider. These can all be challenging adjustments while also dealing with other life events that come with adulthood.

While the United States created a series of recommendations for facilitating this transition, many diabetes centers still did not have a structured program in place. The study interviewed 15 pediatric diabetes centers in Quebec and found that only three had a formal policy on transitions. However, they did not include patients or their families when creating these policies. Some facilities required patients to transition at age 18 while others gave more flexibility depending on the patient’s readiness.

Given that type 1 diabetes is a condition that patients must manage throughout their lives, providing the support and guidance necessary to ease transitions and promote continued good health is essential. It is important to raise awareness and encourage pediatric and adult practices to increase communication and coordination in helping patients with diabetes to transition their care between providers.

The Diabetes Research Connection is doing its part to raise awareness when it comes to type 1 diabetes and the push to find more effective treatments and ways to improve quality of life. The organization provides funding to early career scientists who conduct research focused on type 1 diabetes and are developing innovative approaches. Help support these projects by visiting the Diabetes Research Connection online.

Learn More +
Islet transplantation requires immunosuppressive drugs be taken for the rest of a person's life, though improving the body's ability to manage glucose levels significantly lowers the risk for adverse health events. islet transportation Andrey_Popov/Shutterstock

Researchers Target Immune System for Potential Type 1 Diabetes Treatment

The immune system plays an important role in type 1 diabetes; after all, it is the immune system that destroys insulin-producing cells. When cells are damaged or destroyed, it decreases the body’s ability to convert sugar to energy and produce insulin. Instead, individuals must monitor and adjust their insulin on their own through injections or an insulin pump.

In a small study, researchers examined the possibility of retraining the body’s immune system to not attack insulin-producing cells. They did this through the use of peptide immunotherapy. According to Simi Ahmed, senior scientist at JDRF, “The immunotherapy re-educates the immune system and teaches the cells that they shouldn’t attack the beta cells.”

This is done by injecting disease-related antigens to stimulate regulatory T-cells development and/or make them work better.  However, scientists have not yet determined exactly which antigens are responsible for type 1 diabetes. This is an area where more research is needed.

The study divided up 27 participants into three groups.  All participants had been diagnosed with type 1 diabetes within 100 days, because scientists wanted to test the immunotherapy before all or most of the T-cells had been destroyed, which is common in individuals who have had diabetes for many years.

One group received a placebo drug, one group received immunotherapy every four weeks, and one group received immunotherapy every two weeks. The results showed that the control group had decreased C-peptide levels at 3, 6, 9, and 12 months, but those who received immunotherapy every four weeks had no decline in C-peptide levels. The group that received immunotherapy every two weeks showed a decline in C-peptide levels at 12 months.  When C-peptide levels decrease, it means that less insulin is being produced.

While the test group was too small to determine why these variations occurred, it does show that there is potential in this therapy and more extensive testing is needed with a larger group.  There were no noted side effects, meaning immunotherapy appears to be safe for individuals with type 1 diabetes.

Further research is needed to determine how often immunotherapy would be needed and whether individuals who have had the disease for many years could potentially benefit. Studies have shown that some people who have had diabetes long-term still have detectable C-peptide levels.

This study opens the door for many new trials and areas of research. Immunotherapy is an approach that may hold great potential upon initial diagnosis of type 1 diabetes. The Diabetes Research Connection supports this type of innovative research and funds studies that are often deemed high-risk. Learn more about the projects backed by the Diabetes Research Connection by visiting us online and consider donating to the cause.

Learn More +
Christel Oerum

How to Live a Healthy Life with Type 1 Diabetes

About Christel

Christel is a Los Angeles based blogger, certified personal trainer, and diabetes advocate. She has been living with type 1 diabetes since 1997 and at an early stage decided that it wasn’t going to slow her down. Her motto is “There is Nothing You Can’t do With Diabetes”. She writes about Health, Fitness and how to be Fit With Diabetes on TheFitBlog.com. She also trains people with diabetes from across the globe, online and in person, and supports them in meeting their health and fitness goals.

How to Live a Healthy Life with Type 1 Diabetes

Most of the people who approach me for diabetes coaching wants to know the secrets to living a healthy life with diabetes.

Many of their questions are about weight loss, blood sugar management when exercising, and healthy nutrition. There is so much conflicting information online on what we should and should not do to be healthy with type one diabetes that it’s no wonder there’s confusion on the subject!

I love sharing my experience and what works for me. I started my website, TheFitBlog.com, as a solution to what I perceived as an information void when it comes to exercise and health for people living with diabetes. TheFitBlog is a dedicated diabetes website written by people with diabetes for people with diabetes.

You’ll find an abundance of resources on TheFitBlog, but today I want to share my top tips for living a healthy life with #T1D.

1.     Resistance training

While cardio can be great for stress management and strengthening the cardiovascular system, resistance training is literally your golden ticket to better diabetes health – both in terms of body composition and insulin sensitivity.

Think of your muscles as a lot of little “gas tanks” that can store glucose. Because glucose from your food is mainly absorbed by your muscle tissue, resistance training (which builds muscle mass) is particularly good at improving blood sugars after meals. You don’t have to build bodybuilder-sized muscles to achieve this effect or even the amount of muscle mass I have. Any improvement from where you are now will help.

Resistance training, combined with proper nutrition, has also been shown to be the most effective combination for changing body composition and reducing overall body fat.1

If you’re new to resistance training start with body-weight exercises or resistance bands before progressing to using weights.

2.     Gain an understanding of nutrition and know what you eat

Being active is a great step toward a better health, but if you don’t eat according to your goals, you won’t get far. I often say that proper nutrition is 80% of the journey.

When it comes to proper nutrition for people living with type 1 diabetes, I don’t believe there is one approach that is the best for everyone. I always recommend eating a balanced diet, including low/medium glycemic carbs, lean protein, and healthy fats in amounts that support whatever your fitness and health goals are.
However, some foods will affect blood sugars more or less dramatically and I recommend that you spend some time learning how different food affects your blood sugar. Because even if you stick to low glycemic carbs, some might not work for you.

A great example is old-fashioned oats. They are generally considered a great carb source from a blood sugar perspective, but for some people, oats will make their blood sugar skyrocket. You have to learn what works for you through experimentation.

A good way of assessing if your current diet is right for your needs is to keep a food diary for a while. It can be very helpful in understanding your current diet and how they affect your mood, weight, and blood sugars. This includes measuring out portions and thereby (re)learning portion sizes and accurate carb counting.

3.     Track and learn

Aside from tracking your nutrition and potentially making tweaks, I highly recommend spending some time tracking and analyzing how your body reacts to other key variables.

Tracking the key variables in your health journey (such as exercise, food, stress, and sleep) and their impact on your blood sugar is the only way you’ll start seeing trends and learn to be as proactive as possible when it comes to blood sugar management.

For, ultimately, you can’t adjust to what you don’t know or understand, and it’s impossible to look for trends and patterns without data.

What I’ve found, with myself and the many people with T1D I’ve worked with over the years, is that when we start understanding how our bodies react to certain types of exercise and different foods, it becomes easier to reduce the amount of out-of-range blood sugar. It takes time and effort but putting in that work up front sets you up with less blood sugar related frustrations in the future.

4.     Do what you love

Although I just tried (hard) to convince you that resistance training is the way to go, that might not be the right thing for you. If you try it out (give it at least a month) and really don’t like it, do something else. For an exercise routine to be something you can adhere to, you must enjoy it at some level, or at least don’t hate it.

There are so many ways to exercise that you should be able to find something you like. If you prefer dancing, do that. Biking, running, swimming and walking are all great too.

I’ve also found that switching it up, for example, doing yoga one day and resistance training another can be really beneficial for body and mind. However, you’ll have to watch your blood sugar since different types of exercise will impact your blood sugar differently (read more about that here).

Conclusion

Getting your exercise regime and nutrition dialed in to fit your needs and goals is something that can and should take a little time. We can’t expect results overnight, especially since we have a few more variables to take into consideration that people who don’t have T1D do. But if you take your time and learn how your body reacts to exercise and your nutrition, you can start making small tweaks that will lead to better health and diabetes management in the long run.

References

1. https://www.ncbi.nlm.nih.gov/pubmed/28871849

Learn More +
Tips&TricksToManageDiabetes

Tips and Tricks for Managing Diabetes

Managing type 1 diabetes can be tricky. Everyone’s body is different and responds differently to certain types of activity and treatment. That is why it is so important to be vigilant about monitoring blood sugar and knowing how to respond quickly and appropriately. If you have a child with diabetes, you want to ensure that they know how to check their blood sugar, what the results mean, and how to respond if it is too low or too high. In addition, those who spend the most time with them – whether family, friends, educators, or coaches – should also know how to assist and provide help when necessary.

Be Prepared. One reader fills plastic pencil boxes with supplies her child may need at school and leaves one in each classroom. The box contains not only snacks and juice, but also glucose tablets and information on managing diabetes. Your child could also carry one in their backpack, or have one in the locker room. This is something that could be done at any age, and that adults can do as well. Consider leaving prepared boxes in your desk at work, the break room, or other places you frequent.

Plastic cases also come in handy for organizing supplies. One reader uses different colored boxes for different times of the day when preparing insulin syringes for the week. Just make sure that everything is clearly labeled as well. This can also be a good way of helping your child learn to manage their diabetes through color-coding.

Find what works for you. Not a fan of orange juice? Keep apple juice or grape juice on hand instead. Looking for a quick way to get your 14 grams of carbohydrates without taking a glucose tablet? Stock up on fun-size packs of Skittles which are perfectly proportioned and easy to grab and go. You could also prepare small baggies with four Starburst, 12 gummy bears, two tablespoons of raisins, or six large jelly beans. A small apple or orange work well too to quickly boost blood sugar.

Other hacks include adapting clothing to accommodate your insulin pump or finding accessories where you can easily store your supplies for quick access while working out or traveling. This way, you can continue carrying about your normal business while also effectively managing your diabetes and being prepared.

While there is not a cure yet for type 1 diabetes, scientists continue to learn more about this condition and develop cutting-edge treatment possibilities. The Diabetes Research Connection provides valuable funding that allows early career scientists to pursue research and trials that may one day change how type 1 diabetes is treated. Learn more by visiting us online and checking out current projects.

Learn More +
pasta e fagioli

Winter Comfort Food Recipes for Those with Type 1 Diabetes

Now that the holidays are over and we’re deep into winter, you’re probably finding yourself craving warm, rich, delicious comfort food. Hearty soups, chili with cornbread, macaroni and cheese, chicken pot pie, pasta, baked potatoes – we all have our favorite foods and meals for when it’s chilly outside.

However, for those of us with type 1 diabetes, indulging in our favorite comfort food can be a bit more complicated, especially when so much of these foods are carb-heavy.

Below we’ve compiled some of our favorite T1D-friendly comfort foods for the colder winter months.

Pasta e Fagioli

Taken from Diabetic Living.

Pasta e Fagioli is a traditional pasta and bean soup that is perfect for warming up on a cold night.

[su_spoiler title=”View recipe”]

Makes: 8 servings

Ingredients

1 tablespoon olive oil
2 ounces prosciutto or turkey bacon, chopped
2 cups chopped onions (2 large)
1/2 cup chopped celery (1 stalk)
1/2 cup chopped carrot (1 medium)
2 tablespoons bottled minced garlic
1 tablespoon dried oregano, crushed
1 teaspoon anchovy paste (optional)
1 teaspoon crushed red pepper
2 14 – ounce can reduced-sodium chicken broth
1 28 – ounce can no-salt-added diced tomatoes, undrained
1 cup whole grain medium pasta shells
2 15 – ounce can no-salt-added cannellini beans (white kidney beans), rinsed and drained
1/2 cup snipped fresh parsley
2 tablespoons lemon juice
1/4 cup finely shredded Parmesan cheese (1 ounce)

  1. In a Dutch oven, heat oil over medium-high heat. Add prosciutto; cook for 2 to 3 minutes or until crisp. Using a slotted spoon, transfer prosciutto to paper towels; let drain. Set aside.
  2. Add onions, celery, carrot, and garlic to the Dutch oven; cook over medium heat for 3 to 4 minutes or until softened, stirring frequently. Stir in oregano, anchovy paste (if desired), and crushed red pepper. Cook and stir for 1 minute. Add broth, tomatoes and pasta shells. Bring to boiling; reduce heat. Simmer, uncovered, about 15 minutes or until pasta is tender.
  3. Meanwhile, use a fork to mash one can of the beans. Stir the whole and mashed beans into pasta mixture. Simmer about 5 minutes or until heated through.
  4. Stir in parsley and lemon juice. Immediately ladle into serving bowls. Sprinkle with Parmesan and the prosciutto.

Nutrition (per serving): 235 calories, 5 g fat, 3 g saturated fat, 2 mg cholesterol, 490 mg sodium, 35 g carbohydrates, 9 g fiber, 7 g sugars, 13 g protein

[/su_spoiler]

Classic Beef Stroganoff

Taken from Diabetic Living.

Beef Stroganoff is a hearty, creamy beef dish, and this slow-cooker recipe makes it perfect for enjoying on a busy weeknight!

[su_spoiler title=”View recipe”]

Makes: 6 servings

Ingredients

1 1/4 pounds beef stew meat
2 teaspoons vegetable oil
2 1/2 cups sliced fresh mushrooms
1/2 cup sliced green onions (4) or chopped onion (1 medium)
1 bay leaf
2 cloves garlic, minced
1/2 teaspoon dried oregano, crushed
1/4 teaspoon salt
1/4 teaspoon dried thyme, crushed
1/4 teaspoon black pepper
1 1/2 cups 50% less sodium beef broth
1/4 cup dry sherry
1 8 – ounce carton light sour cream
1/3 cup all-purpose flour
1/4 cup water
Sauteed zucchini “noodles” or hot cooked whole wheat pasta
Snipped fresh parsley or basil (optional)

  1. Cut up any large pieces of meat. In a large nonstick skillet, cook half of the meat in hot oil over medium-high heat until brown. Using a slotted spoon, remove meat from skillet. Repeat with the remaining meat. Drain off fat. Set meat aside.
  2. In a 3-1/2- or 4-quart slow cooker combine mushrooms, green onions, bay leaf, garlic, oregano, salt, thyme, and pepper. Add meat. Pour broth and sherry over mixture in cooker.
  3. Cover and cook on low-heat setting for 8 to 10 hours or on high-heat setting for 4 to 5 hours. Remove and discard bay leaf.
  4. If using low-heat setting, turn to high-heat setting. In a medium bowl stir together sour cream, flour, and the water until smooth. Gradually stir about 1 cup of the hot broth into sour cream mixture. Return sour cream mixture to cooker; stir to combine. Cover and cook about 30 minutes more or until thickened and bubbly. Serve over sauteed zucchini and, if desired, sprinkle with parsley.

Nutrition (per serving): 257 calories, 10 g total fat, 5 g saturated fat, 74 mg cholesterol, 312 mg sodium, 14 g carbohydrates, 2 g fiber, 4 g sugars, 26 g protein

[/su_spoiler]

For more T1D-friendly recipes and other healthy living tips, sign up for our newsletter!

Learn More +

OUR PROJECTS

See our approved research projects and campaigns.

Role of the integrated stress response in type 1 diabetes pathogenesis
In individuals with type 1 diabetes (T1D), the insulin-producing beta cells are spontaneously destroyed by their own immune system. The trigger that provokes the immune system to destroy the beta cells is unknown. However, accumulating evidence suggest that signals are perhaps first sent out by the stressed beta cells that eventually attracts the immune cells. Stressed cells adapt different stress mitigation systems as an adaptive response. However, when these adaptive responses go awry, it results in cell death. One of the stress response mechanisms, namely the integrated stress response (ISR) is activated under a variety of stressful stimuli to promote cell survival. However, when ISR is chronically activated, it can be damaging to the cells and can lead to cell death. The role of the ISR in the context of T1D is unknown. Therefore, in this DRC funded study, we propose to study the ISR in the beta cells to determine its role in propagating T1D.
Wearable Skin Fluorescence Imaging Patch for the Detection of Blood Glucose Level on an Engineered Skin Platform
zhang
A Potential Second Cure for T1D by Re-Educating the Patient’s Immune System
L Ferreira
Validating the Hypothesis to Cure T1D by Eliminating the Rejection of Cells From Another Person by Farming Beta Cells From a Patient’s Own Stem Cells
Han Zhu
Taming a Particularly Lethal Category of Cells May Reduce/Eliminate the Onset of T1D
JRDwyer 2022 Lab 1
Can the Inhibition of One Specific Body Gene Prevent Type 1 Diabetes?
Melanie
Is Cholesterol Exacerbating T1D by Reducing the Functionality and Regeneration Ability of Residual Beta Cells?
Regeneration Ability of Residual Beta Cells
A Call to Question… Is T1D Caused by Dysfunctionality of Two Pancreatic Cells (β and α)?
Xin Tong
Novel therapy initiative with potential path to preventing T1D by targeting TWO components of T1D development (autoimmune response and beta-cell survival)
flavia pecanha